Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 2044-2053.doi: 10.19799/j.cnki.2095-4239.2024.0009
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xuxu TANG2,3(), Ting XU2,3, Deren CHU1,3()
Received:
2024-01-04
Revised:
2024-02-02
Online:
2024-06-28
Published:
2024-06-26
Contact:
Deren CHU
E-mail:xxtang@ghs.cn;cdr@ghs.cn
CLC Number:
Xuxu TANG, Ting XU, Deren CHU. Study on the failure mechanism and thermal safety of nickel-cobalt-manganese ternary lithium-ion cells after float-charging at different voltages[J]. Energy Storage Science and Technology, 2024, 13(6): 2044-2053.
1 | RITCHIE A, HOWARD W. Recent developments and likely advances in lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 809-812. |
2 | 靳成杰, 尹乐乐, 王振新, 等. 不同类型NCM三元锂离子电池性能分析[J]. 电源技术, 2019, 43(10): 1637-1640. |
JIN C J, YIN L L, WANG Z X, et al. Performance analysis of different types of NCM ternary lithium ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(10): 1637-1640. | |
3 | XU X M, SUN X D, ZHAO L J, et al. Research on thermal runaway characteristics of NCM lithium-ion battery under thermal-electrical coupling abuse[J]. Ionics, 2022, 28(12): 5449-5467. |
4 | 尹涛, 郑莉莉, 贾隆舟, 等. 锂离子电池浮充电研究综述[J]. 储能科学与技术, 2021, 10(1): 310-318. |
YIN T, ZHENG L L, JIA L Z, et al. Overview of research on float charging for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 310-318. | |
5 | CHUANG Y C, KE Y L, CHUANG H S, et al. Battery float charge technique using parallel-loaded resonant converter for discontinuous conduction operation[J]. IEEE Transactions on Industry Applications, 2012, 48(3): 1070-1078. |
6 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 固定型阀控式铅酸蓄电池 第1部分:技术条件: GB/T 19638.1—2014[S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Lead-acid batteries for stationary valve-regulated—Part 1: Technical requirements: GB/T 19638.1—2014[S]. Beijing: Standards Press of China, 2015. | |
7 | YI S Z, WANG B, CHEN Z A, et al. The difference in aging behaviors and mechanisms between floating charge and cycling of LiFePO4/graphite batteries[J]. Ionics, 2019, 25(5): 2139-2145. |
8 | 尹涛, 贾隆舟, 常修亮, 等. 软包磷酸铁锂电池高电压浮充后热安全研究[J]. 储能科学与技术, 2022, 11(8): 2546-2555. |
YIN T, JIA L Z, CHANG X L, et al. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge[J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. | |
9 | 赵伟, 肖祥, 梅成林. 磷酸铁锂/石墨电池浮充工况下的失效机理研究[J]. 电源技术, 2020, 44(4): 492-495. |
ZHAO W, XIAO X, MEI C L. Study on failure mechanism of LiFePO4/graphite battery under floating charge[J]. Chinese Journal of Power Sources, 2020, 44(4): 492-495. | |
10 | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
WANG H H, WU Z Q, CHU D R. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition[J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. | |
11 | 王琛, 闵永军. 基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3508-3518. |
WANG C, MIN Y J. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. | |
12 | DUBARRY M, TRUCHOT C, CUGNET M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations[J]. Journal of Power Sources, 2011, 196(23): 10328-10335. |
13 | 俎梦杨, 张梦, 李子坤, 等. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. |
ZU M Y, ZHANG M, LI Z K, et al. Cycle performance and degradation mechanism of Ni-rich NCA, NCM, and NCMA[J]. Energy Storage Science and Technology, 2023, 12(1): 51-60. | |
14 | 郭琦沛, 张彩萍, 高洋, 等. 基于容量增量曲线的三元锂离子电池健康状态估计方法[J]. 全球能源互联网, 2018, 1(2): 180-187. |
GUO Q P, ZHANG C P, GAO Y, et al. Incremental capacity curve based state of health estimation for LNMCO lithium-ion batteries[J]. Journal of Global Energy Interconnection, 2018, 1(2): 180-187. | |
15 | 尹涛. 浮充工况下储能锂离子电池性能研究[D]. 青岛: 青岛大学, 2022. |
YIN T. Study on performance of energy storage lithium-ion battery under floating charge condition[D]. Qingdao: Qingdao University, 2022. | |
16 | 孙建丹, 汪红辉, 储德韧, 等. 不同荷电状态三元锂离子电池热失控动力学研究[J]. 电源技术, 2023, 47(8): 1040-1045. |
SUN J D, WANG H H, CHU D R, et al. Kinetic study of thermal runaway behaviors of lithium-ion batteries with different SOCs[J]. Chinese Journal of Power Sources, 2023, 47(8): 1040-1045. | |
17 | 冯耀华. 高镍型锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2制备及改性[D]. 兰州: 兰州理工大学, 2020. |
FENG Y H. Synthesis and modification of LiNi0.8Co0.1Mn0.1O2 rich nickel cathode materials for lithium-ion batteries[D]. Lanzhou: Lanzhou University of Technology, 2020. | |
18 | 王羽平, 屠芳芳, 陈冬, 等. 磷酸铁锂软包电池过充热失控实验研究[J]. 电源技术, 2020, 44(10): 1434-1437. |
WANG Y P, TU F F, CHEN D, et al. Experimental study on thermal runaway of lithium iron phosphate soft packed battery during overcharge[J]. Chinese Journal of Power Sources, 2020, 44(10): 1434-1437. | |
19 | 刘家龙. 18650型三元锂离子电池微过充老化与安全性研究[D]. 合肥: 中国科学技术大学, 2021. |
LIU J L. Study on micro-overcharge aging and safety of 18650 ternary lithium ion battery[D]. Hefei: University of Science and Technology of China, 2021. |
[1] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[2] | Baoquan LIU, Xiaoyu CAO. Accurate typical gas detection of lithium battery in early thermal runaway period [J]. Energy Storage Science and Technology, 2024, 13(6): 1995-2009. |
[3] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
[4] | Zhiyou MAO, Xiaoyu NING, Peipei ZHANG, Bei ZHANG, Jiayuan XIANG. Effect of separators on thermal runaway performance for Li-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1154-1158. |
[5] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[6] | Yaning ZHU, Zhendong ZHANG, Lei SHENG, Long CHEN, Zehua ZHU, Linxiang FU, Qing BI. Thermal runaway experiment of 21700 lithium-ion battery under different health conditions [J]. Energy Storage Science and Technology, 2024, 13(3): 971-980. |
[7] | Chunshan HE, Ziyang WANG, Bin YAO. Experimental study of the thermal runaway characteristics of lithium iron phosphate batteries for energy storage under various discharge powers [J]. Energy Storage Science and Technology, 2024, 13(3): 981-989. |
[8] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
[9] | Zhaoyang LI, Dinghong LIU, Yanyan ZHAO, Man CHEN, Qikai LEI, Peng PENG, Lei LIU. Nail penetration characteristics of high-energy-density lithium-ion pouch cell [J]. Energy Storage Science and Technology, 2024, 13(1): 57-71. |
[10] | Xin JIN, Jianru ZHANG, Qiyu WANG, Rui ZHANG, Bitong WANG, Zhongyang ZHANG, Hailong YU, Xiqian YU, Hong LI. Study on thermal runaway of hybrid solid-liquid batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. |
[11] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[12] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[13] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[14] | Jingxuan MA, Yuhang SONG, Shuang SHI, Nawei LYU, Kangyong YIN, Guirong WANG, Kaiyuan DU, Yang JIN. Early warning of the thermal runaway of liquid-cooled LiFePO4 battery module based on the sudden change of air-pressure signal detection [J]. Energy Storage Science and Technology, 2023, 12(7): 2246-2255. |
[15] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||