Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 2864-2870.doi: 10.19799/j.cnki.2095-4239.2024.0513
Previous Articles Next Articles
Yajie LI1(), Yiping WANG1, Bin CHEN1, Hailong LIN1, Geng ZHANG2(), Siqi SHI1,3()
Received:
2024-06-06
Revised:
2024-06-26
Online:
2024-09-28
Published:
2024-09-20
Contact:
Geng ZHANG, Siqi SHI
E-mail:liyajiejuly@shu.edu.cn;geng.zhang@kaust.edu.sa;sqshi@shu.edu.cn
CLC Number:
Yajie LI, Yiping WANG, Bin CHEN, Hailong LIN, Geng ZHANG, Siqi SHI. Machine learning-assisted phase-field simulation for predicting the impact of lithium-ion transport parameters on maximum battery dendrite height and space utilization rate[J]. Energy Storage Science and Technology, 2024, 13(9): 2864-2870.
Table 1
R2 and RMSE of 10 machine learning models in predicting maximum dendrite height and space utilization rate"
机器学习模型 | 最大枝晶生长高度 | 空间利用率 | |||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
AdaBoost | 0.986 | 0.022 | 0.976 | 0.030 | |
bagging | 0.994 | 0.015 | 0.991 | 0.019 | |
decision tree | 0.983 | 0.024 | 0.980 | 0.028 | |
gradient boosting | 0.992 | 0.016 | 0.990 | 0.019 | |
extremely randomized tree | 0.995 | 0.013 | 0.990 | 0.020 | |
KNN | 0.995 | 0.013 | 0.992 | 0.017 | |
MLP | 0.983 | 0.024 | 0.979 | 0.028 | |
random forest | 0.994 | 0.014 | 0.991 | 0.019 | |
Ridge | 0.973 | 0.030 | 0.946 | 0.045 | |
SVR | 0.913 | 0.054 | 0.906 | 0.059 |
1 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. DOI: 10.1021/acs.chemrev.7b00115. |
2 | CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. DOI: 10.1016/j.jpowsour.2015.09.055. |
3 | LIU Z, LI Y S, JI Y Z, et al. Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations[J]. Cell Reports Physical Science, 2021, 2(1): 100294. DOI: 10.1016/j.xcrp.2020.100294. |
4 | HONG Z J, VISWANATHAN V. Phase-field simulations of lithium dendrite growth with open-source software[J]. ACS Energy Letters, 2018, 3(7): 1737-1743. DOI: 10.1021/acsenergylett.8b01009. |
5 | SHI S Q, GAO J, LIU Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Physics B, 2016, 25(1): 018212. DOI: 10.1088/1674-1056/25/1/018212. |
6 | 施思齐. 电化学储能中的计算、建模与仿真[M]. 北京: 化学工业出版社, 2023: 11. |
SHI S Q. Calculation, modeling and simulation in electrochemical energy storage[M]. Beijing: Chemical Industry Press, 2023: 11. | |
7 | LIANG L Y, QI Y, XUE F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(5 Pt 1): 051609. DOI: 10.1103/PhysRevE.86.051609. |
8 | JÄCKLE M, GROß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. The Journal of Chemical Physics, 2014, 141(17): 174710. DOI: 10.1063/1.4901055. |
9 | JING H X, XING H, DONG X L, et al. Nonlinear phase-field modeling of lithium dendritic growth during electrodeposition[J]. Journal of the Electrochemical Society, 2022, 169(3): 032511. DOI: 10.1149/1945-7111/ac5fed. |
10 | WANG Q, ZHANG G, LI Y J, et al. Application of phase-field method in rechargeable batteries[J]. NPJ Computational Materials, 2020, 6: 176. DOI: 10.1038/s41524-020-00445-w. |
11 | 李亚捷, 张更, 沙立婷, 等. 可充电电池中枝晶问题的相场模拟[J]. 储能科学与技术, 2022, 11(3): 929-938. DOI: 10.19799/j.cnki.2095-4239.2022.0049. |
LI Y J, ZHANG G, SHA L T, et al. Phase-field simulation of dendrite growth in rechargeable batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 929-938. DOI: 10.19799/j.cnki.2095-4239.2022.0049. | |
12 | 李亚捷, 施思齐, 张更, 等. 锂离子电池隔膜结构与枝晶形貌分析软件: 2022SR0147340[P]. 2022. |
13 | 李亚捷, 施思齐, 张更, 等. 基于相场模型模拟电池枝晶生长计算程序: 2022SR0147443[P]. 2022. |
14 | LI Y J, ZHANG G, CHEN B, et al. Understanding the separator pore size inhibition effect on lithium dendrite via phase-field simulations[J]. Chinese Chemical Letters, 2022, 33(6): 3287-3290. DOI: 10.1016/j.cclet.2022.03.065. |
15 | LI Y J, SHA L T, ZHANG G, et al. Phase-field simulation tending to depict practical electrodeposition process in lithium-based batteries[J]. Chinese Chemical Letters, 2023, 34(2): 107993. DOI: 10.1016/j.cclet.2022.107993. |
16 | LI Y J, CHEN B, WANG Y P, et al. Inhibiting dendrite growth by customizing electrolyte or separator to achieve anisotropic lithium-ion transport: A phase-field study[J]. Acta Physico Chimica Sinica, 2023: 2305053. DOI: 10.3866/pku.whxb202305053. |
17 | LI Y J, ZHAO W, ZHANG G, et al. Unified picture on temperature dependence of lithium dendrite growth via phase-field simulation[J]. Energy Material Advances, 2023, 4: DOI: 10.34133/energymatadv.0053. |
18 | 张更, 王巧, 沙立婷, 等. 相场模型及其在电化学储能材料中的应用[J]. 物理学报, 2020, 69(22): 27-39. DOI: 10.7498/aps.69.20201411. |
ZHANG G, WANG Q, SHA L T, et al. Phase-field model and its application in electrochemical energy storage materials[J]. Acta Physica Sinica, 2020, 69(22): 27-39. DOI: 10.7498/aps.69.20201411. | |
19 | LI Y J, SHA L T, LV P L, et al. Influences of separator thickness and surface coating on lithium dendrite growth: A phase-field study[J]. Materials, 2022, 15(22): 7912. DOI: 10.3390/ma15227912. |
20 | HONG Z J, VISWANATHAN V. Prospect of thermal shock induced healing of lithium dendrite[J]. ACS Energy Letters, 2019, 4(5): 1012-1019. DOI: 10.1021/acsenergylett.9b00433. |
21 | GAO L T, GUO Z S. Phase-field simulation of Li dendrites with multiple parameters influence[J]. Computational Materials Science, 2020, 183: 109919. DOI: 10.1016/j.commatsci. 2020.109919. |
22 | YANG C, LI S L, WANG X T, et al. Phase-field simulation of multi-phase interactions in Fe-C peritectic solidification[J]. Computational Materials Science, 2020, 171: 109220. DOI: 10.1016/j.commatsci.2019.109220. |
23 | LIU Y, GUO B R, ZOU X X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Materials, 2020, 31: 434-450. DOI: 10.1016/j.ensm.2020.06.033. |
24 | LIU Y, ZHAO T L, JU W W, et al. Materials discovery and design using machine learning[J]. Journal of Materiomics, 2017, 3(3): 159-177. DOI: 10.1016/j.jmat.2017.08.002. |
25 | 施思齐, 涂章伟, 邹欣欣, 等. 数据驱动的机器学习在电化学储能材料研究中的应用[J]. 储能科学与技术, 2022, 11(3): 739-759. DOI: 10.19799/j.cnki.2095-4239.2022.0051. |
SHI S Q, TU Z W, ZOU X X, et al. Applying data-driven machine learning to studying electrochemical energy storage materials[J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. DOI: 10.19799/j.cnki.2095-4239.2022.0051. | |
26 | LAMA B, SMIRNOVA A L, PAUDEL T R. Enhanced Li-ion diffusivity of LiFePO4 by Ru doping: Ab initio and machine learning force field results[J]. ACS Applied Energy Materials, 2023, 6(20): 10424-10431. DOI: 10.1021/acsaem.3c01429. |
27 | MA Y, HAN S X, SUN Y, et al. Improving ionic conductivity of garnet solid-state electrolytes using Gradient boosting regression optimized machine learning[J]. Journal of Power Sources, 2024, 604: 234492. DOI: 10.1016/j.jpowsour.2024.234492. |
28 | DHAKAL P, SHAH J K. A generalized machine learning model for predicting ionic conductivity of ionic liquids[J]. Molecular Systems Design & Engineering, 2022, 7(10): 1344-1353. DOI: 10.1039/D2ME00046F. |
29 | JAGAD H D, FU J T, FULLERTON W R, et al. A physics-based model assisted by machine-learning for sodium-ion batteries with both liquid and solid electrolytes[J]. Journal of the Electrochemical Society, 2024, 171(6): 060516. DOI: 10.1149/1945-7111/ad4a11. |
30 | LIU Y, WU J M, AVDEEV M, et al. Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties[J]. Advanced Theory and Simulations, 2020, 3(2): DOI: 10.1002/adts.201900215. |
31 | LIU Y, GE X Y, YANG Z W, et al. An automatic descriptors recognizer customized for materials science literature[J]. Journal of Power Sources, 2022, 545: 231946. DOI: 10.1016/j.jpowsour.2022.231946. |
32 | 刘悦, 邹欣欣, 杨正伟, 等. 材料领域知识嵌入的机器学习[J]. 硅酸盐学报, 2022, 50(3): 863-876. DOI: 10.14062/j.issn.0454-5648.20220093. |
LIU Y, ZOU X X, YANG Z W, et al. Machine learning embedded with materials domain knowledge[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 863-876. DOI: 10.14062/j.issn.0454-5648.20220093. |
[1] | Jinbao FAN, Na LI, Yikun WU, Chunwang HE, Le YANG, Weili SONG, Haosen CHEN. Digital twin technology for energy batteries at the cell level [J]. Energy Storage Science and Technology, 2024, 13(9): 3112-3133. |
[2] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[3] | Dinghong LIU, Wenkai DONG, Zhaoyang LI, Hongzhu ZHANG, Xin QI. Estimation of real-vehicle battery state of health using the RUN-GRU-attention model [J]. Energy Storage Science and Technology, 2024, 13(9): 3042-3058. |
[4] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
[5] | Congxin LI, Meiling YUE, Xintong LI, Qinghui XIONG, Xiaoyan LIU. Proton exchange membrane fuel cell aging performance prediction based on conditional neural networks [J]. Energy Storage Science and Technology, 2024, 13(9): 3094-3102. |
[6] | Ziyu LIU, Zekun JIANG, Wei QIU, Quan XU, Yingchun NIU, Chunming XU, Tianhang ZHOU. Application of artificial intelligence in long-duration redox flow batteries storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. |
[7] | Yingying XIE, Bin DENG, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Intelligent R&D of battery design automation in the era of artificial intelligence [J]. Energy Storage Science and Technology, 2024, 13(9): 3182-3197. |
[8] | Zhenwei ZHU, Jiawei MIAO, Xiayu ZHU, Xiaoxu WANG, Jingyi QIU, Hao ZHANG. Research progress in lithium-ion battery remaining useful life prediction based on machine learning [J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. |
[9] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[10] | Xiang LI, Dezhong LIU, Kai YUAN, Dapeng CHEN. Solid-state electrolyte for low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2327-2347. |
[11] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[12] | Zhengguang ZHAO, Zhenying CHEN, Guangqun ZHAI, Xi ZHANG, Xiaodong ZHUANG. Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. |
[13] | Youman ZHAO, Yang HUANG, Li XIONG, Haijun LIN. From material structural feature to the functional feature [J]. Energy Storage Science and Technology, 2023, 12(11): 3287-3298. |
[14] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[15] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||