Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1884-1899.doi: 10.19799/j.cnki.2095-4239.2024.1069
• Energy Storage Materials and Devices • Previous Articles Next Articles
					
													Congqing TANG(
), Jingsheng CAI(
)
												  
						
						
						
					
				
Received:2024-11-14
															
							
																	Revised:2025-01-26
															
							
															
							
																	Online:2025-05-28
															
							
																	Published:2025-05-21
															
						Contact:
								Jingsheng CAI   
																	E-mail:3566831284@qq.com;jscai@cslg.edu.cn
																					CLC Number:
Congqing TANG, Jingsheng CAI. Recent advances in presodiation strategies for sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(5): 1884-1899.
Fig. 3
(a) Schematic diagram of ball grinding process between sodium metal and base metal; In (b) and (d), X-ray diffraction patterns of Na3P and Na3Sb single-phase powders are shown, respectively; (c) and (e) show the corresponding electrochemical voltage curves of Na3P and Na3Sb single-phase powders in sodium half-cells, respectively[6]"
														Table 1
Typical additives and the performance of the batteries"
| 添加剂名词 | 截止电压/V | 理论容量/(mAh/g) | 实际容量/(mAh/g) | 参考文献 | 
|---|---|---|---|---|
| NaN3 | 4.2 | 412 | 300 | [ | 
| Na2S | 4.1 | 687 | 687 | [ | 
| Na3P | 4.3 | 804 | 600 | [ | 
| NaCrO2 | 4.2 | 251 | 229 | [ | 
| Na2NiO2 | 3.6 | 392 | 285 | [ | 
| Na2CO3 | 4.2 | 506 | 110 | [ | 
| NaNO2 | 4.3 | 427 | 350 | [ | 
| Na2C2O4 | 4.6 | 400 | 386.8 | [ | 
| Na2C4O4 | 4.1 | 339 | 230 | [ | 
| Na2C6O6 | 4.5 | 250 | 360 | [ | 
| Na2C6H2O6 | 4.5 | 248 | 265 | [ | 
| EDTA-4Na | 4.5 | 237 | 420 | [ | 
| DTPA-5Na | 4.3 | 266 | 363 | [ | 
| Na2O | 2.5~4.2 | 864 | 500 | [ | 
| Na2O2 | 4 | 687 | 421 | [ | 
| NaNH2 | 3.8 | 686 | 680 | [ | 
| CH3COONa | 4.18 | 326 | 302 | [ | 
| PABZ-Na | 3.45 | 168 | 160 | [ | 
| Na2C3O5 | 4 | 331 | 310 | [ | 
Table 2
Electrochemical properties of different anode materials"
| 负极材料 | 电流 | 电化学性能(可逆容量、循环、容量保持率) | 参考文献 | |
|---|---|---|---|---|
钛基 材料  | NaTiOPO4 Ti2(SO4)3  | 0.1 C 0.1 C  | 180 mAh/g,/,/ 120 mAh/g,15,77.5%  | [ [  | 
| 金属氧化物 | Na2Ti3O7 α-MoO3  | 0.04 C 0.1 C  | 约200 mAh/g,/,/ 100 mAh/g,500,55% (0.2 C)  | [ [  | 
| 金属复合材料 | a-TiO2-x /Sb SiC-Sb-C Ti3C2T x / SnP  | 100 mA/g 100 mA /g 0.2 A /g  | 591.9 mAh/g,200,96.4% (1 A/ g) 595 mAh/g,100,80.7% 587 mAh/g,1000,91.2%  | [ [ [  | 
有机 材料  | Na2C8H4O4 有机羧酸钠盐  | 0.1 C 40 mA /g  | 258 mAh/g,50,74.4% >200 mAh/g(全电池),50,/  | [ | 
碳基 材料  | 炭黑 硬碳 石墨烯 软碳  | C/75 0.1 C 0.2 C 20 mA /g  | 121 mAh/g,/,/ 300.6 mAh/g,100,98.1% 174.3 mAh/g,1000,80.9% 232 mAh/g,40,98.1%  | [ [ [  | 
Fig. 12
(a) A "card" model: blue and red represent different phases, respectively, with sodium ions inserted into the nanodomain and subsequently filled pores; (b) Model structure: mechanical model of sodium ion storage at defective sites and adsorption of sodium ions in the tiny pores of graphene sheets in the low pressure range; (c) Parameters related to the capacity curve of the typical potential of the hard carbon anode in sodium batteries; (d) Schematic diagram of the storage of sodium ions in layered hard carbon[60]"
														| 1 | 徐铭礼, 刘猛闯, 杨泽洲, 等. 高比能钠离子电池预钠化技术研究进展[J]. 物理化学学报, 2023, 39(3): 33-48. DOI: 10.3866/PKU.WHXB202210043. | 
| XU M L, LIU M C, YANG Z Z, et al. Research progress on presodiation strategies for high energy sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(3): 33-48. DOI: 10.3866/PKU.WHXB202210043. | |
| 2 | SUN D, LUO B, WANG H Y, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64: 103937. DOI: 10.1016/j.nanoen.2019.103937. | 
| 3 | FERNÁNDEZ-ROPERO A J, ZARRABEITIA M, BARALDI G, et al. Improved sodiation additive and its nuances in the performance enhancement of sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11814-11821. DOI: 10.1021/acsami.0c20542. | 
| 4 | JO J H, CHOI J U, PARK Y J, et al. New insight into ethylenediaminetetraacetic acid tetrasodium salt as a sacrificing sodium ion source for sodium-deficient cathode materials for full cells[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5957-5965. DOI: 10.1021/acsami.8b18488. | 
| 5 | ZHANG B, DUGAS R, ROUSSE G, et al. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries[J]. Nature Communications, 2016, 7: 10308. DOI: 10.1038/ncomms10308. | 
| 6 | 陈杰, 陈伟伦, 张旭, 等. 钠离子电池预钠化技术研究进展[J]. 储能科学与技术, 2022, 11(11): 3487-3496. DOI: 10.19799/j.cnki.2095-4239.2022.0332. | 
| CHEN J, CHEN W L, ZHANG X, et al. Research progress of pre-sodiation technologies in sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3487-3496. DOI: 10. 19799/j.cnki.2095-4239.2022.0332. | |
| 7 | MIRZA S, SONG Z H, ZHANG H Z, et al. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na4V2(PO4)3 as the cathode material[J]. Journal of Materials Chemistry A, 2020, 8(44): 23368-23375. DOI: 10.1039/D0TA08186H. | 
| 8 | BLOI L M, PAMPEL J, DÖRFLER S, et al. Sodium sulfide cathodes superseding hard carbon pre-sodiation for the production and operation of sodium-sulfur batteries at room temperature[J]. Advanced Energy Materials, 2020, 10(7): 1903245. DOI: 10.1002/aenm.201903245. | 
| 9 | SHEN B L, ZHAN R M, DAI C L, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells[J]. Journal of Colloid and Interface Science, 2019, 553: 524-529. DOI: 10.1016/j.jcis.2019.06.056. | 
| 10 | PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688. DOI: 10.1021/acs.chemmater.5b02684. | 
| 11 | SATHIYA M, THOMAS J, BATUK D, et al. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes[J]. Chemistry of Materials, 2017, 29(14): 5948-5956. DOI: 10.1021/acs.chemmater.7b01542. | 
| 12 | JO C H, CHOI J U, YASHIRO H, et al. Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3903-3909. DOI: 10.1039/c8ta09833f. | 
| 13 | NIU Y B, GUO Y J, YIN Y X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Advanced Materials, 2020, 32(33): 2001419. DOI: 10.1002/adma.202001419. | 
| 14 | ARNAIZ M, SHANMUKARAJ D, CARRIAZO D, et al. A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies[J]. Energy & Environmental Science, 2020, 13(8): 2441-2449. DOI: 10.1039/D0EE00351D. | 
| 15 | PAN X X, CHOJNACKA A, BÉGUIN F. Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems[J]. Energy Storage Materials, 2021, 40: 22-30. DOI: 10.1016/j.ensm.2021.04.048. | 
| 16 | SHEN X, ZHAO J M, LI Y Q, et al. Controlled synthesis of Na3(VOPO4)2F cathodes with an ultralong cycling performance[J]. ACS Applied Energy Materials, 2019, 2(10): 7474-7482. DOI: 10.1021/acsaem.9b01458. | 
| 17 | SHANMUKARAJ D, KRETSCHMER K, SAHU T, et al. Highly efficient, cost effective, and safe sodiation agent for high-performance sodium-ion batteries[J]. ChemSusChem, 2018, 11(18): 3286-3291. DOI: 10.1002/cssc.201801099. | 
| 18 | MARTÍNEZ DE ILARDUYA J, OTAEGUI L, GALCERÁN M, et al. Towards high energy density, low cost and safe Na-ion full-cell using P2-Na0.67[Fe0.5Mn0.5]O2 and Na2C4O4 sacrificial salt[J]. Electrochimica Acta, 2019, 321: 134693. DOI: 10.1016/j.electacta. 2019.134693. | 
| 19 | ZOU K Y, CAI P, TIAN Y, et al. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors[J]. Small Methods, 2020, 4(3): 1900763. DOI: 10.1002/smtd.201900763. 1900763. | 
| 20 | JO J H, CHOI J U, PARK Y J, et al. A new pre-sodiation additive for sodium-ion batteries[J]. Energy Storage Materials, 2020, 32: 281-289. DOI: 10.1016/j.ensm.2020.07.002. | 
| 21 | ZHANG Q, GAO X W, SHI Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan[J]. Energy Storage Materials, 2021, 39: 54-59. DOI: 10.1016/j.ensm.2021.04.011. | 
| 22 | GUO Y J, NIU Y B, WEI Z, et al. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2772-2778. DOI: 10.1021/acsami.0c20870. | 
| 23 | JEŻOWSKI P, CHOJNACKA A, PAN X, et al. Sodium amide as a "zero dead mass" sacrificial material for the pre-sodiation of the negative electrode in sodium-ion capacitors[J]. Electrochimica Acta, 2021, 375: 137980. DOI: 10.1016/j.electacta.2021.137980. | 
| 24 | ZOU K Y, SONG Z R, GAO X, et al. Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors[J]. Angewandte Chemie International Edition, 2021, 60(31): 17070-17079. DOI: 10.1002/anie.202103569. | 
| 25 | ZOU K Y, SONG Z R, LIU H Q, et al. Electronic effect and regiochemistry of substitution in pre-sodiation chemistry[J]. The Journal of Physical Chemistry Letters, 2021, 12(49): 11968-11979. DOI: 10.1021/acs.jpclett.1c03078. | 
| 26 | 张睿. 正极补钠和负极界面调控提升钠离子电池能量密度的研究[D]. 长沙: 中南大学, 2023. DOI: 10.27661/d.cnki.gzhnu. 2023. 000257. | 
| ZHANG R. Improving energy density of sodium-ion batteries based on cathode pre-sodiation and anode interface tuning strategies[D]. Changsha: Central South University, 2023. DOI: 10.27661/d.cnki.gzhnu.2023.000257. | |
| 27 | LIU W J, CHEN X L, ZHANG C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23207-23212. DOI: 10.1021/acsami.9b05005. | 
| 28 | WU W, HU Z L, ZHAO Z F, et al. A functional cathode sodium compensation agent for stable sodium-ion batteries[J]. Green Energy & Environment, 2025, 10(1): 173-182. DOI: 10.1016/j.gee.2024.02.009. | 
| 29 | FANG K, TANG Y L, LIU J J, et al. Injecting excess Na into a P2-type layered oxide cathode to achieve presodiation in a Na-ion full cell[J]. Nano Letters, 2023, 23(14): 6681-6688. DOI: 10.1021/acs.nanolett.3c01890. | 
| 30 | ZHENG M, WILLEY M, WEST A C. Electrochemical nucleation of copper on ruthenium[J]. Electrochemical and Solid-State Letters, 2005, 8(10): C151. DOI: 10.1149/1.2035701. | 
| 31 | KAMATH G, CUTLER R W, DESHMUKH S A, et al. In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications[J]. The Journal of Physical Chemistry C, 2014, 118(25): 13406-13416. DOI: 10. 1021/jp502319p. | 
| 32 | PONROUCH A, MARCHANTE E, COURTY M, et al. In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science, 2012, 5(9): 8572-8583. DOI: 10.1039/C2EE22258B. | 
| 33 | KOMABA S, ISHIKAWA T, YABUUCHI N, et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4165-4168. DOI: 10.1021/am200973k. | 
| 34 | PONROUCH A, GOÑI A R, PALACÍN M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27: 85-88. DOI: 10.1016/j.elecom.2012.10.038. | 
| 35 | LIN Z H, XIA Q B, WANG W L, et al. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries[J]. InfoMat, 2019, 1(3): 376-389. DOI: 10.1002/inf2.12023. | 
| 36 | TANG Z, ZHOU S Y, HUANG Y C, et al. Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: Origins, solutions, and perspectives[J]. Electrochemical Energy Reviews, 2023, 6(1): 8. DOI: 10.1007/s41918-022-00178-y. | 
| 37 | LE P M L, VO T D, PAN H, et al. Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes[J]. Advanced Functional Materials, 2020, 30(25): 2001151. | 
| 38 | YIN L M, WANG M L, XIE C, et al. High-voltage cyclic ether-based electrolytes for low-temperature sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023. DOI: 10.1021/acsami.2c23008. | 
| 39 | ZHEN Y C, SA R J, ZHOU K Q, et al. Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes[J]. Nano Energy, 2020, 74: 104895. DOI: 10.1016/j.nanoen.2020.104895. | 
| 40 | HOU X, LI T Y, QIU Y L, et al. Interfacial chemistry of perfluorinated-anion additives deciphering ether-based electrolytes for sodium-ion batteries[J]. ACS Energy Letters, 2024, 9(2): 461-467. DOI: 10.1021/acsenergylett.3c02811. | 
| 41 | TANG J L, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. DOI: 10.1016/j.jpowsour.2018.06.067. | 
| 42 | LIU X X, TAN Y C, LIU T C, et al. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(50): 1903795. DOI: 10.1002/adfm.201903795. | 
| 43 | ALCÁNTARA R, LAVELA P, ORTIZ G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(4): A222. DOI: 10.1149/1.1870612. | 
| 44 | WANG H B, XIAO Y Z, SUN C, et al. A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode[J]. RSC Advances, 2015, 5(129): 106519-106522. DOI: 10.1039/C5RA21235A. | 
| 45 | MOEEZ I, JUNG H G, LIM H D, et al. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41394-41401. DOI: 10.1021/acsami.9b14381. | 
| 46 | LIU L Y, TIAN Y, ABDUSSALAM A, et al. Hard carbons as anodes in sodium-ion batteries: Sodium storage mechanism and optimization strategies[J]. Molecules, 2022, 27(19): 6516. DOI: 10.3390/molecules27196516. | 
| 47 | MU L Q, BEN L B, HU Y S, et al. Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7141-7147. DOI: 10.1039/C6TA00891G. | 
| 48 | SENGUTTUVAN P, ROUSSE G, VEZIN H, et al. Titanium(III) sulfate as new negative electrode for sodium-ion batteries[J]. Chemistry of Materials, 2013, 25(12): 2391-2393. DOI: 10.1021/cm401181b. | 
| 49 | SENGUTTUVAN P, ROUSSE G, SEZNEC V, et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials, 2011, 23(18): 4109-4111. DOI: 10.1021/cm202076g. | 
| 50 | HARIHARAN S, SARAVANAN K, BALAYA P. α-MoO3: A high performance anode material for sodium-ion batteries[J]. Electrochemistry Communications, 2013, 31: 5-9. DOI: 10.1016/j.elecom.2013.02.020. | 
| 51 | GAO L, LU D J, YANG Y H, et al. Amorphous TiO2- x modified Sb nanowires as a high-performance sodium-ion battery anode[J]. Journal of Non-Crystalline Solids, 2022, 581: 121396. DOI: 10.1016/j.jnoncrysol.2022.121396. | 
| 52 | WU L, PEI F, MAO R J, et al. SiC-Sb-C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries[J]. Electrochimica Acta, 2013, 87: 41-45. DOI: 10.1016/j.electacta. 2012.08.103. | 
| 53 | TANG J Y, PENG X Y, LIN T E, et al. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage[J]. eScience, 2021, 1(2): 203-211. DOI: 10.1016/j.esci.2021.12.004. | 
| 54 | ZHAO L, ZHAO J M, HU Y S, et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery[J]. Advanced Energy Materials, 2012, 2(8): 962-965. DOI: 10.1002/aenm.201200166. | 
| 55 | ABOUIMRANE A, WENG W, ELTAYEB H, et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells[J]. Energy & Environmental Science, 2012, 5(11): 9632-9638. DOI: 10.1039/C2EE22864E. | 
| 56 | ALCÁNTARA R, JIMÉNEZ-MATEOS J M, LAVELA P, et al. Carbon black: A promising electrode material for sodium-ion batteries[J]. Electrochemistry Communications, 2001, 3(11): 639-642. DOI: 10.1016/S1388-2481(01)00244-2. | 
| 57 | LU Y X, ZHAO C L, QI X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. DOI: 10.1002/aenm.201800108. | 
| 58 | WANG Y X, CHOU S L, LIU H K, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57: 202-208. DOI: 10.1016/j.carbon. 2013.01.064. | 
| 59 | YAO X H, KE Y J, REN W H, et al. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage[J]. Advanced Energy Materials, 2019, 9(8): 1900094. DOI: 10.1002/aenm.201900094. | 
| 60 | DOU X W, HASA I, SAUREL D, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104. DOI: 10.1016/j.mattod. 2018.12.040. | 
| 61 | LU H Y, SUN S F, XIAO L F, et al. High-capacity hard carbon pyrolyzed from subbituminous coal as anode for sodium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 729-735. DOI: 10.1021/acsaem.8b01784. | 
| 62 | 曹永安, 游济远, 邹家轩, 等. 钠离子电池预钠化技术研究进展[J]. 精细石油化工, 2023, 40(2): 75-80. DOI: 10.20075/j.cnki.issn.1003-9384.2023.02.018. | 
| CAO Y A, YOU J Y, ZOU J X, et al. Research progress on pre-sodiation strategy of sodium-ion battery[J]. Speciality Petrochemicals, 2023, 40(2): 75-80. DOI: 10.20075/j.cnki.issn.1003-9384. 2023.02.018. | |
| 63 | LIU M C, ZHANG J Y, GUO S H, et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17620-17627. DOI: 10.1021/acsami. 0c02230. | 
| 64 | XIAO B W, SOTO F A, GU M, et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes[J]. Advanced Energy Materials, 2018, 8(24): 1801441. DOI: 10.1002/aenm.201801441. | 
| 65 | WANG X H, QI L, WANG H Y. Commercial carbon molecular sieves as a Na+-storage anode material in dual-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14): A3649-A3656. DOI: 10.1149/2.0491714jes. | 
| 66 | MA R F, FAN L, CHEN S H, et al. Offset initial sodium loss to improve coulombic efficiency and stability of sodium dual-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15751-15759. DOI: 10.1021/acsami.8b03648. | 
| [1] | Deshuai LIU, Huiqin ZHU, Ruihao SUN, Meng LI, Wenhao GONG, Xiaohui LI, Weiwei QIAN. Synergistic dual-additive boost cyclability of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. | 
| [2] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. | 
| [3] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. | 
| [4] | Youwei WEN, Anqi TENG, Yongqi LI, Jiamin TIAN, Kangjie DING, Qiangling DUAN, Qingsong WANG. Electrical performance and heat production behavior of sodium-ion batteries at different discharge rate [J]. Energy Storage Science and Technology, 2025, 14(4): 1687-1697. | 
| [5] | Yongqi LI, Zhiyuan LI, Youwei WEN, Chengdong WANG, Qiangling DUAN, Qingsong WANG. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667. | 
| [6] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. | 
| [7] | Lan WU, Jie YANG, Lei GENG, Run HU, Shanglong PENG. Residual alkali converted sodium compensation cladding on the surface of sodium ion battery cathode [J]. Energy Storage Science and Technology, 2025, 14(1): 21-29. | 
| [8] | Lifeng WANG, Naiqing REN, Hai YANG, Yu YAO, Yan YU. Advances in low-temperature electrolytes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2206-2223. | 
| [9] | Yuanyuan JIANG, Fangfang TU, Fangping ZHANG, Yinglai WANG, Jiawen CAI, Donghui YANG, Yanhong LI, Jiayuan XIANG, Xinhui XIA, Jipeng FU. Study on technology and mechanism of prelithiation for high-performance lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1435-1442. | 
| [10] | Min SHI, Pengjie JIANG, Chen XU, Xin HE, Xiao LIANG. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth [J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634. | 
| [11] | Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. | 
| [12] | Zhige TAO, Shunbing ZHU, Shuangping HOU, Ke LI, He WANG. Comprehensive research on fire and safety protection technology for lithium battery energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(2): 536-545. | 
| [13] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. | 
| [14] | Cuihong ZENG, Xiujuan CHEN, Man LI, Wenji YIN, Jiming PENG, Sijiang HU, Youguo HUANG, Hongqiang WANG, Qingyu LI. Investigation of W-doped P2-Na0.6Li0.27Mn0.73O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3731-3741. | 
| [15] | Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization [J]. Energy Storage Science and Technology, 2024, 13(1): 36-47. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||