1 |
MCCLANAHAN T R. Reconsidering and rescaling climate change predictions for coral reefs[J]. Nature Climate Change, 2024, 14(8): 779-781. DOI: 10.1038/s41558-024-02079-y.
|
2 |
代宇涵, 刘春, 周朋, 等. 双碳背景下电力系统储能技术的应用与研究进展[J]. 储能科学与技术, 2024, 13(8): 2772-2774. DOI: 10. 19799/j.cnki.2095-4239.2024.0695.
|
|
DAI Y H, LIU C, ZHOU P, et al. Application and research progress of energy storage technology in power systems under the dual carbon background[J]. Energy Storage Science and Technology, 2024, 13(8): 2772-2774. DOI: 10.19799/j.cnki.2095-4239.2024.0695.
|
3 |
ZHANG S X, LI Y W, DU E S, et al. A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system[J]. Renewable and Sustainable Energy Reviews, 2023, 185: 113606. DOI: 10.1016/j.rser.2023.113606.
|
4 |
SHEN M, CHEN J L. Optimization of peak-valley pricing policy based on a residential electricity demand model[J]. Journal of Cleaner Production, 2022, 380: 134761. DOI: 10.1016/j.jclepro. 2022.134761.
|
5 |
LIU Y X, HE Q, SHI X P, et al. Energy storage in China: Development progress and business model[J]. Journal of Energy Storage, 2023, 72: 108240. DOI: 10.1016/j.est.2023.108240.
|
6 |
赵添辰, 张弓, 张云飞, 等. "双碳" 目标下抽水蓄能提升系统保供能力的技术经济性研究[J]. 储能科学与技术, 2024, 13(3): 1059-1073. DOI: 10.19799/j.cnki.2095-4239.2023.0798.
|
|
ZHAO T C, ZHANG G, ZHANG Y F, et al. Technical and economic research on the capacity of supply assurance for pumped-storage systems under the target of "dual carbon"[J]. Energy Storage Science and Technology, 2024, 13(3): 1059-1073. DOI: 10.19799/j.cnki.2095-4239.2023.0798.
|
7 |
RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: 113295. DOI: 10.1016/j.enconman. 2020.113295.
|
8 |
ZHAO Y, HUANG J X, SONG J, et al. Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores[J]. Energy, 2024, 296: 131148. DOI: 10.1016/j.energy.2024.131148.
|
9 |
LI Y Y, SHENG H M, CHENG Y H, et al. State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis[J]. Applied Energy, 2020, 277: 115504. DOI: 10.1016/j.apenergy.2020.115504.
|
10 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013.
|
11 |
DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. DOI: 10.1016/j.est.2020.101756.
|
12 |
LI W, ZHANG L J, DENG Y J, et al. Thermo-economic assessment of a salt hydrate thermochemical energy storage-based Rankine Carnot battery system[J]. Energy Conversion and Management, 2024, 312: 118564. DOI: 10.1016/j.enconman. 2024.118564.
|
13 |
MATEU-ROYO C, MOTA-BABILONI A, NAVARRO-ESBRÍ J, et al. Multi-objective optimization of a novel reversible High-Temperature Heat Pump-Organic Rankine Cycle (HTHP-ORC) for industrial low-grade waste heat recovery[J]. Energy Conversion and Management, 2019, 197: 111908. DOI: 10.1016/j.enconman.2019.111908.
|
14 |
BELLOS E, TZIVANIDIS C, SAID Z. Investigation and optimization of a solar-assisted pumped thermal energy storage system with flat plate collectors[J]. Energy Conversion and Management, 2021, 237: 114137. DOI: 10.1016/j.enconman. 2021.114137.
|
15 |
SORKNÆS P, THELLUFSEN J Z, KNOBLOCH K, et al. Economic potentials of Carnot batteries in 100% renewable energy systems[J]. Energy, 2023, 282: 128837. DOI: 10.1016/j.energy.2023.128837.
|
16 |
FRATE G F, FERRARI L, DESIDERI U. Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage[J]. Energy Conversion and Management, 2020, 208: 112530. DOI: 10.1016/j.enconman.2020.112530.
|
17 |
LI J, PENG X Y, YANG Z, et al. Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review[J]. Applied Energy, 2022, 311: 118609. DOI: 10.1016/j.apenergy.2022.118609.
|
18 |
MANENTE G, LAZZARETTO A, BONAMICO E. Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems[J]. Energy, 2017, 123: 413-431. DOI: 10.1016/j.energy.2017.01.151.
|
19 |
LI J, GE Z, DUAN Y Y, et al. Effects of heat source temperature and mixture composition on the combined superiority of dual-pressure evaporation organic Rankine cycle and zeotropic mixtures[J]. Energy, 2019, 174: 436-449. DOI: 10.1016/j.energy. 2019.02.186.
|
20 |
DAI B M, WANG Q, LIU S C, et al. Novel configuration of dual-temperature condensation and dual-temperature evaporation high-temperature heat pump system: Carbon footprint, energy consumption, and financial assessment[J]. Energy Conversion and Management, 2023, 292: 117360. DOI: 10.1016/j.enconman. 2023.117360.
|
21 |
WANG M, CHENG Y, YU J L. Analysis of a dual-temperature air source heat pump cycle with an ejector[J]. Applied Thermal Engineering, 2021, 193: 116994. DOI: 10.1016/j.applthermaleng. 2021.116994.
|
22 |
JOCKENHÖFER H, STEINMANN W D, BAUER D. Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration[J]. Energy, 2018, 145: 665-676. DOI: 10.1016/j.energy.2017.12.087.
|
23 |
HU S Z, YANG Z, LI J, et al. Thermo-economic analysis of the pumped thermal energy storage with thermal integration in different application scenarios[J]. Energy Conversion and Management, 2021, 236: 114072. DOI: 10.1016/j.enconman. 2021.114072.
|