Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 3110-3121.doi: 10.19799/j.cnki.2095-4239.2025.0169
• Energy Storage Materials and Devices • Previous Articles
Honghui LIU1,2(), Donghui LI1(
), Qifeng QIAN2, Lingchao XIAO2, Lei XIONG2, Zhongguo CHEN2
Received:
2025-02-22
Revised:
2025-03-20
Online:
2025-08-28
Published:
2025-08-18
Contact:
Donghui LI
E-mail:hhliu2017@sina.com;lidonghui@tju.edu.cn
CLC Number:
Honghui LIU, Donghui LI, Qifeng QIAN, Lingchao XIAO, Lei XIONG, Zhongguo CHEN. Preparation of vanadium nitride-based electrode materials and their application progress in supercapacitors[J]. Energy Storage Science and Technology, 2025, 14(8): 3110-3121.
Table 1
The structure and performance of VN prepared by different methods"
序号 | 材料 | 比表面积/(m2/g) | 晶粒尺寸/nm | 电极体系 | 电流密度/(A/g) | 比容量/(F/g) | 循环次数 | 容量保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
1 | VN | 4.1 | 10 | 三电极 | 1.0 | 152 | 1000(1 A/g) | 66 | [ |
2 | VN | 22.9 | — | 三电极 | 1.0 | 186 | — | — | [ |
3 | VN-C | 20 | 18.9 | 三电极 | 0.05 | 192 | 1000(0.1 A/g) | 90 | [ |
4 | VN | 9 | 28 | 三电极 | 2 mV/s | 60 | 1000(0.1 A/g) | 59 | [ |
5 | VN | 57 | 10~30 | 三电极 | 1.0 | 413 | 1000(1 A/g) | 60 | [ |
6 | VN | — | 200 | 三电极 | 30 mV/s | 161 | 400(1 A/g) | 70 | [ |
Fig. 4
(a) Schematic illustration on the preparation of porous VN nanobelts; (b), (c) SEM and (d), (e) TEM images of sample VN-500; (f) CVs of sample VN-500 at various scan rates (10—100 mV/s); (g) the specific capacitance of VN-T (T=300 ℃、400 ℃、500 ℃、600 ℃、700 ℃) at various scan rates; (h) cycling performance of VN-500 electrode upon 1000 cycles at 50 mV/s, the inset presents the recorded CV curves collected at the 1st, 500th, and 1000th cycles[46]"
Fig. 8
(a) A schematic summarizing the synthesis process and ultimate morphology of the VN/CNTs 3D array; (b), (c) Increasing magnification SEM micrographs of VN/CNTs/Inconel/GC; (d) CVs of VN/CNTs/inconel/GC at different scan rates from 20 to 1000 mV/s; (e) relationship between the specific capacitance versus scan rate[53]"
[1] | SHARMA S, CHAND P. Supercapacitor and electrochemical techniques: A brief review[J]. Results in Chemistry, 2023, 5: 100885. DOI: 10.1016/j.rechem.2023.100885. |
[2] | CONWAY B E. Electrochemical supercapacitors: scientific fundamentals and technological applications[M]. New York: Kluwer Academic/Plenum Publishers, 1999. |
[3] | SALANNE M, ROTENBERG B, NAOI K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1: 16070. DOI: 10.1038/nenergy.2016.70. |
[4] | WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors: From new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854. DOI: 10.1039/C7CS00205J. |
[5] | ZHU W H, TATARCHUK B J. Characterization of asymmetric ultracapacitors as hybrid pulse power devices for efficient energy storage and power delivery applications[J]. Applied Energy, 2016, 169: 460-468. DOI: 10.1016/j.apenergy.2016.02.020. |
[6] | LEE D H, LEE K M, YOON J R. The electrochemical properties of supercapacitor for smart grid energy storage system with variation of MWCNT/super P content[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2010, 23(11): 843-847. DOI: 10.4313/jkem.2010.23.11.843. |
[7] | GAIKWAD P, TIWARI N, KAMAT R, et al. A comprehensive review on the progress of transition metal oxides materials as a supercapacitor electrode[J]. Materials Science and Engineering: B, 2024, 307: 117544. DOI: 10.1016/j.mseb.2024.117544. |
[8] | KHALID M U, KATUBI K M, ZULFIQAR S, et al. Boosting the electrochemical activities of MnO2 for next-generation supercapacitor application: Adaptation of multiple approaches[J]. Fuel, 2023, 343: 127946. DOI: 10.1016/j.fuel.2023.127946. |
[9] | TEMAM A G, ALSHOAIBI A, GETANEH S A, et al. Recent progress on V2O5 based electroactive materials: Synthesis, properties, and supercapacitor application[J]. Current Opinion in Electrochemistry, 2023, 38: 101239. DOI: 10.1016/j.coelec. 2023. 101239. |
[10] | TADESSE M G, AHMMED A S, LÜBBEN J F. Review on conductive polymer composites for supercapacitor applications[J]. Journal of Composites Science, 2024, 8(2): 53. DOI: 10.3390/jcs8020053. |
[11] | R C, YADAV A A. Spray-deposited cobalt-doped RuO2 electrodes for high-performance supercapacitors[J]. Electrochimica Acta, 2023, 437: 141521. DOI: 10.1016/j.electacta.2022.141521. |
[12] | HU C C, CHEN W C, CHANG K H. How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors[J]. Journal of the Electrochemical Society, 2004, 151(2): A281. DOI: 10.1149/1.1639020. |
[13] | CHOI D, BLOMGREN G E, KUMTA P N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors[J]. Advanced Materials, 2006, 18(9): 1178-1182. DOI: 10.1002/adma.200502471. |
[14] | PALRAJ J, ARULRAJ A, M S, et al. Rapid and stable energy storage using MoN/Mo2N composite electrodes[J]. Applied Surface Science Advances, 2024, 19: 100579. DOI: 10.1016/j.apsadv. 2024. 100579. |
[15] | GONZALEZ Z, YUS J, MORATALLA R, et al. Electrophoretic deposition of binder-free TiN nanoparticles to design 3D microstructures. The role of sintering in the microstructural robustness of supercapacitor electrodes[J]. Electrochimica Acta, 2021, 369: 137654. DOI: 10.1016/j.electacta.2020.137654. |
[16] | AZAM M A, RAMLI N S N, NOR N A N M, et al. Recent advances in biomass-derived carbon, mesoporous materials, and transition metal nitrides as new electrode materials for supercapacitor: A short review[J]. International Journal of Energy Research, 2021, 45(6): 8335-8346. DOI: 10.1002/er.6377. |
[17] | LIU Y, WU Q H, LIU L Y, et al. Vanadium nitride for aqueous supercapacitors: A topic review[J]. Journal of Materials Chemistry A, 2020, 8(17): 8218-8233. DOI: 10.1039/D0TA01490G. |
[18] | FU Y H, PENG Y Y, ZHAO L, et al. Recent advances of fabricating vanadium nitride nanocompositions for high-performance anode materials of supercapacitors[J]. Journal of Energy Storage, 2024, 75: 109564. DOI: 10.1016/j.est. 2023. 109564. |
[19] | ZHU R J, LIU J, HUA C, et al. Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors[J]. Rare Metals, 2024, 43(2): 431-454. DOI: 10.1007/s12598-023-02439-1. |
[20] | WIXOM M R, TARNOWSKI D J, PARKER J M, et al. High surface area metal carbide and metal nitride electrodes[J]. MRS Online Proceedings Library, 1997, 496(1): 643-653. DOI: 10. 1557/PROC-496-643. |
[21] | PANDE P. Investigation of charge-storage mechanisms of early-transition-metal nitrides and carbides as electrodes for electrochemical capacitors[D]. Ann Arbor: University of Michigan, 2013. |
[22] | DJIRE A. Charge storage mechanisms of high surface area carbides and nitrides for supercapacitors [D]. Ann Arbor: University of Michigan, 2016. |
[23] | LUCIO-PORTO R, BOUHTIYYA S, PIERSON J F, et al. VN thin films as electrode materials for electrochemical capacitors[J]. Electrochimica Acta, 2014, 141: 203-211. DOI: 10.1016/j.electacta.2014.07.056. |
[24] | MAZUMDER B, HECTOR A L. Synthesis and applications of nanocrystalline nitride materials[J]. Journal of Materials Chemistry, 2009, 19(27): 4673-4686. DOI: 10.1039/B817407E. |
[25] | BONDARCHUK O, MOREL A, BÉLANGER D, et al. Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance[J]. Journal of Power Sources, 2016, 324: 439-446. DOI: 10.1016/j.jpowsour.2016.05.093. |
[26] | VAIDHYANATHAN B, AGRAWAL D K, ROY R. Novel synthesis of nitride powders by microwave-assisted combustion[J]. Journal of Materials Research, 2000, 15(4): 974-981. DOI: 10.1557/JMR. 2000.0139. |
[27] | 朱军, 程国鹏, 王欢, 等. 偏钒酸铵一步法制备氮化钒研究[J]. 钢铁钒钛, 2017, 38(4): 6-11. DOI: 10.7513/j.issn.1004-7638. 2017. 04.002. |
ZHU J, CHENG G P, WANG H, et al. Experimental study of perparing VN from ammonium metavanadate by one step method[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 6-11. DOI: 10. 7513/j.issn.1004-7638.2017.04.002. | |
[28] | 杨双平, 张甜甜, 高文彬, 等. 一步法制备碳氮化钒的工艺优化试验[J]. 钢铁, 2023, 58(1): 170-178. DOI: 10.13228/j.boyuan.issn0449-749x. 20220434. |
YANG S P, ZHANG T T, GAO W B, et al. Experiment on process optimization of one-step preparation of vanadium carbonitride[J]. Iron & Steel, 2023, 58(1): 170-178. DOI: 10.13228/j.boyuan.issn0449-749x.20220434. | |
[29] | 杨双平, 赵永喆, 杨尚琦, 等. V2O5制备碳氮化钒参数优化研究[J]. 稀有金属, 2024, 48(10): 1510-1518. DOI: 10.13373/j.cnki.cjrm.XY22100002. |
YANG S P, ZHAO Y Z, YANG S Q, et al. Optimization of vanadium carbonitride preparation by V2O5[J]. Chinese Journal of Rare Metals, 2024, 48(10): 1510-1518. DOI: 10.13373/j.cnki.cjrm.XY22100002. | |
[30] | SUBRAMANYA HERLE P, HEGDE M S, VASATHACHARYA N Y, et al. Synthesis of TiN, VN, and CrN from ammonolysis of TiS2, VS2, and Cr2S3[J]. Journal of Solid State Chemistry, 1997, 134(1): 120-127. DOI: 10.1006/jssc.1997.7554. |
[31] | PARKIN I P, ELWIN G S. Atmospheric pressure chemical vapour deposition of vanadium nitride and oxynitride films on glass from reaction of VCl4 with NH3[J]. Journal of Materials Chemistry, 2001, 11(12): 3120-3124. DOI: 10.1039/B103843P. |
[32] | LIU H H, ZHANG H L, HU Y Y, et al. Agglomeration-free VN nanoparticles with controllable crystallite size prepared by a clapboard approach from Zn-V-O based precursor[J]. Journal of Alloys and Compounds, 2019, 778: 803-810. DOI: 10.1016/j.jallcom.2018.11.053. |
[33] | LUO Q, LU C C, LIU L R, et al. A review on the synthesis of transition metal nitride nanostructures and their energy related applications[J]. Green Energy & Environment, 2023, 8(2): 406-437. DOI: 10.1016/j.gee.2022.07.002. |
[34] | LEE H M, JEONG G H, KIM S W, et al. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors[J]. Applied Surface Science, 2017, 400: 194-199. DOI: 10.1016/j.apsusc.2016.12.190. |
[35] | HANUMANTHA P J, DATTA M K, KADAKIA K S, et al. A simple low temperature synthesis of nanostructured vanadium nitride for supercapacitor applications[J]. Journal of the Electrochemical Society, 2013, 160(11): A2195-A2206. DOI: 10.1149/2.081311jes. |
[36] | GIORDANO C, ERPEN C, YAO W T, et al. Metal nitride and metal carbide nanoparticles by a soft urea pathway[J]. Chemistry of Materials, 2009, 21(21): 5136-5144. DOI: 10.1021/cm9018953. |
[37] | WUNCH M A, GARCIA J A, MAHMOOD S F, et al. Vanadium nitride-vanadium oxide-carbon nanofiber hybrids for high performance supercapacitors[J]. Electrochimica Acta, 2024, 488: 143992. DOI: 10.1016/j.electacta.2024.143992. |
[38] | LIU H H, ZHANG H L, XU H B, et al. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors[J]. Nanoscale, 2018, 10(11): 5246-5253. DOI: 10.1039/C7NR08985F. |
[39] | HOU Z Q, GUO K, LI H Q, et al. Facile synthesis and electrochemical properties of nanoflake VN for supercapacitors[J]. CrystEngComm, 2016, 18(17): 3040-3047. DOI: 10.1039/C6CE00333H. |
[40] | GLUSHENKOV A M, HULICOVA-JURCAKOVA D, LLEWELLYN D, et al. Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5[J]. Chemistry of Materials, 2010, 22(3): 914-921. DOI: 10.1021/cm901729x. |
[41] | 高兆辉, 张浩, 曹高萍, 等. 电化学电容器氮化钒负极材料性能研究[J]. 电化学, 2013, 19(2): 178-183. DOI: 10.13208/j.electrochem. 2013.02.008. |
GAO Z H, ZHANG H, CAO G P, et al. Performance of VN as negative electrode materials in electrochemical capacitors[J]. Journal of Electrochemistry, 2013, 19(2): 178-183. DOI: 10. 13208/j.electrochem.2013.02.008. | |
[42] | SHU D, LV C J, CHENG F K, et al. Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors[J]. International Journal of Electrochemical Science, 2013, 8(1): 1209-1225. DOI: 10.1016/S1452-3981(23)14092-2. |
[43] | ZHOU X P, CHEN H Y, SHU D, et al. Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material[J]. Journal of Physics and Chemistry of Solids, 2009, 70(2): 495-500. DOI: 10.1016/j.jpcs.2008.12.004. |
[44] | CHOI D, JAMPANI P H, JAYAKODY J R P, et al. Synthesis, surface chemistry and pseudocapacitance mechanisms of VN nanocrystals derived by a simple two-step halide approach[J]. Materials Science and Engineering: B, 2018, 230: 8-19. DOI: 10.1016/j.mseb.2017.12.017. |
[45] | BI W T, HU Z P, LI X G, et al. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors[J]. Nano Research, 2015, 8(1): 193-200. DOI: 10.1007/s12274-014-0612-y. |
[46] | ZHOU Z Y, LIANG Z, SHAO G, et al. Enhanced capacitive performance of mesoporous vanadium nitride nanobelts[J]. Journal of the Electrochemical Society, 2021, 168(7): 070529. DOI: 10.1149/1945-7111/ac10f6. |
[47] | XU Y L, WANG J, SHEN L F, et al. One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors[J]. Electrochimica Acta, 2015, 173: 680-686. DOI: 10.1016/j.electacta.2015.05.088. |
[48] | ZHAO J X, LIU B, XU S, et al. Fabrication and electrochemical properties of porous VN hollow nanofibers[J]. Journal of Alloys and Compounds, 2015, 651: 785-792. DOI: 10.1016/j.jallcom. 2015.06.111. |
[49] | LIU Y, LIU L Y, KONG L B, et al. Supercapacitor electrode based on nano-vanadium nitride incorporated on porous carbon nanospheres derived from ionic amphiphilic block copolymers & vanadium-contained ion assembly systems[J]. Electrochimica Acta, 2016, 211: 469-477. DOI: 10.1016/j.electacta.2016.06.058. |
[50] | YANG Y L, ZHAO L, SHEN K W, et al. Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage[J]. Journal of Power Sources, 2016, 333: 61-71. DOI: 10.1016/j.jpowsour.2016.09.151. |
[51] | LU X H, LIU T Y, ZHAI T, et al. Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell[J]. Advanced Energy Materials, 2020, 10(42): 2002627. DOI: 10. 1002/aenm.202002627. |
[52] | JIA H N, CAI Y F, LI S, et al. In situ synthesis of core-shell vanadium nitride@N-doped carbon microsheet sponges as high-performance anode materials for solid-state supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 560: 122-129. DOI: 10.1016/j.jcis.2019.10.061. |
[53] | ZHANG L, HOLT C M B, LUBER E J, et al. High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes[J]. The Journal of Physical Chemistry C, 2011, 115(49): 24381-24393. DOI: 10. 1021/jp205052f. |
[54] | GHIMBEU C M, RAYMUNDO-PIÑERO E, FIOUX P, et al. Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(35): 13268-13275. DOI: 10.1039/C1JM11014D. |
[55] | GUO J B, ZHANG Q C, SUN J, et al. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors[J]. Journal of Power Sources, 2018, 382: 122-127. DOI: 10.1016/j.jpowsour.2018.02.034. |
[56] | WANG R T, LANG J W, ZHANG P, et al. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors[J]. Advanced Functional Materials, 2015, 25(15): 2270-2278. DOI: 10.1002/adfm.201404472. |
[57] | ZHOU X H, SHANG C Q, GU L, et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 3058-3063. DOI: 10.1021/am200564b. |
[58] | WEI B B, SHANG C Q, SHUI L L, et al. TiVN composite hollow mesospheres for high-performance supercapacitors[J]. Materials Research Express, 2019, 6(2): 025801. DOI: 10.1088/2053-1591/aaed08. |
[1] | Xiaohan BAN, Mingxia ZHOU, Hongrui HU, Fuliang LIU, Dongwei MA, Bin SHI, Xiaogang ZHANG. Ultrahigh-power lithium-ion batteries based on nano/micro-structured LiCoO2 graded-particle cathode design [J]. Energy Storage Science and Technology, 2025, 14(8): 2950-2959. |
[2] | Yafeng FAN, Zonglin YI, Lijing XIE, Xiaoming LI, Fangyuan SU. Capacitor composition analysis of high-frequency supercapacitors based on first-order RC model [J]. Energy Storage Science and Technology, 2025, 14(8): 2903-2912. |
[3] | Caiying XU, Yuzhen TANG, Qiuyu LI, Haoyue YANG, Yang CHEN, Hengzhao YANG. Supercapacitor energy storage systems for frequency regulation applications in power systems [J]. Energy Storage Science and Technology, 2025, 14(8): 3078-3089. |
[4] | Xinkai SU, Lulu ZHAO, Yanqiao CHEN, Chu WANG, Huanjun CHEN, Yi JIN. Review of the research on industrialization and applications of supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 2994-3003. |
[5] | Rusong YANG, Zhaoxia HOU, Wei LI, Haoran WANG, Xu GAO, Haibo LONG. Preparation of PANI/MnO2/rGO-P ternary composite electrode and its application in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(7): 2791-2800. |
[6] | Yunpeng ZHAO, Yanfang LI, Xinhao CUI, Haiyan SUN, Yingxue TENG. In situ synthesis of nitrogen-doped graphene for supercapacitor applications [J]. Energy Storage Science and Technology, 2025, 14(6): 2270-2277. |
[7] | Yang LENG, Shuo HUANG, Kaixuan GUI, Wenqi YAN, Qi LIU. Study on polyanionic COFs-based composite separators for stabilizing aqueous zinc-ion battery anodes [J]. Energy Storage Science and Technology, 2025, 14(5): 1900-1909. |
[8] | Zhen YAN, Qiang LIU, Huibin LI, Jun ZHANG, Yahui JIANG. Power optimization management method for photovoltaic microgrids based on the state of charge of hybrid energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2067-2077. |
[9] | Guipei XU, Hao LIU, Jiewen LAI, Yifeng LU, Hui HUANG, Huifang DI, Zhenbing WANG. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460. |
[10] | Dequan HUANG, Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG. Research on the application of siloxane solvent in high-voltage lithium metal batteries and electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(4): 1340-1351. |
[11] | Lei WANG, Shaomian LIU, Fenglan FAN, Ziteng YANG. Structure-activity relationships of fast-growing wood based hard carbon anodes for sodium ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1107-1114. |
[12] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[13] | Yi LIANG, Tao WEI, Guangda YIN, Dequan HUANG. Design of a lithiophilic Ag-3D-Cu electrode and its electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(2): 515-524. |
[14] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
[15] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||