Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (10): 3923-3933.doi: 10.19799/j.cnki.2095-4239.2025.0375
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Laifeng SONG1,2(
), Xuqing LANG1,2, Luna NIU1,2, Jinqing JIAO1,2(
), Sining QU3, Ripeng ZHANG1,2, Qingsong WANG4(
)
Received:2025-04-16
Revised:2025-05-30
Online:2025-10-28
Published:2025-10-20
Contact:
Jinqing JIAO, Qingsong WANG
E-mail:songlf.qday@sinopec.com;jiaojq.qday@sinopec.com;pinew@ustc.edu.cn
CLC Number:
Laifeng SONG, Xuqing LANG, Luna NIU, Jinqing JIAO, Sining QU, Ripeng ZHANG, Qingsong WANG. Flame hazard of thermal runaway of lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2025, 14(10): 3923-3933.
Table 2
Key parameters of thermal runaway triggered under 500 W and 1000 W heating power"
| 物理参数 | 500 W | 1000 W |
|---|---|---|
| 热失控触发时间/s | 2295±127 | 514±23 |
| 热失控触发温度/℃ | 107.7±5.2 | 63.1±4.1 |
| 热失控最高温度/℃ | 431.7±11.5 | 396.6±19.3 |
| 热失控温升速率峰值/(℃/s) | 3.82±0.39 | 3.67±0.26 |
| 热失控火焰持续时间/s | 446±66 | 626±81 |
| 质量损失/g | 1223.4±9.1 | 1192.9±29.3 |
| 质量损失速率峰值Ⅰ/(g/s) | 15.33±2.88 | 21.72±6.56 |
| 质量损失速率峰值Ⅱ/(g/s) | 13.11±1.17 | 8.64±0.08 |
| 质量损失速率峰值Ⅲ/(g/s) | 10.99±0.36 | 7.04±1.41 |
| 质量损失速率峰值Ⅳ/(g/s) | 7.90±1.85 | 7.32±1.17 |
| [1] | WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. Innovation, 2021, 2(4): 100180. DOI: 10.1016/j.xinn.2021.100180. |
| [2] | HAN P F, CAI Q X, ODA T, et al. Assessing the recent impact of COVID-19 on carbon emissions from China using domestic economic data[J]. Science of the Total Environment, 2021, 750: 141688. DOI: 10.1016/j.scitotenv.2020.141688. |
| [3] | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10. 1016/j.joule.2020.02.010. |
| [4] | BUGRYNIEC P J, DAVIDSON J N, CUMMING D J, et al. Pursuing safer batteries: Thermal abuse of LiFePO4 cells[J]. Journal of Power Sources, 2019, 414: 557-568. DOI: 10.1016/j.jpowsour.2019.01.013. |
| [5] | 高飞, 杨凯, 李大贺, 等. 锂离子电池组件燃烧性及危险性评价[J]. 中国安全科学学报, 2015, 25(8): 62-67. DOI: 10.16265/j.cnki.issn 1003-3033.2015.08.010. |
| GAO F, YANG K, LI D H, et al. Evaluation of combustibility of lithium ion battery components and dangers they involve[J]. China Safety Science Journal, 2015, 25(8): 62-67. DOI: 10.16265/j.cnki.issn1003-3033.2015.08.010. | |
| [6] | 北京市应急管理局. 丰台区"4·16"较大火灾事故调查报告[R]. 北京: 北京市应急管理局, 2021. |
| [7] | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002. |
| [8] | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. DOI: 10.1016/j.jpowsour.2012. 02.038. |
| [9] | LYU P Z, LIU X J, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage[J]. Energy Storage Materials, 2020, 31: 195-220. DOI: 10.1016/j.ensm.2020.06.042. |
| [10] | XU G J, HUANG L, LU C L, et al. Revealing the multilevel thermal safety of lithium batteries[J]. Energy Storage Materials, 2020, 31: 72-86. DOI: 10.1016/j.ensm.2020.06.004. |
| [11] | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. DOI: 10.1016/j.ensm.2020.10.020. |
| [12] | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009. |
| [13] | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: 6924. DOI: 10.1038/ncomms7924. |
| [14] | GACHOT G, GRUGEON S, ESHETU G G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409. DOI: 10.1016/j.electacta.2012.08.016. |
| [15] | GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-Impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186. DOI: 10.1039/c5ra05897j. |
| [16] | BARKHOLTZ H M, PREGER Y, IVANOV S, et al. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge[J]. Journal of Power Sources, 2019, 435: 226777. DOI: 10.1016/j.jpowsour. 2019.226777. |
| [17] | ZHANG Y, CHENG S Y, MEI W X, et al. Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis[J]. Applied Energy, 2023, 336: 120695. DOI: 10.1016/j.apenergy.2023.120695. |
| [18] | LU T Y, CHIANG C C, WU S H, et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1083-1088. DOI: 10.1007/s10973-013-3137-9. |
| [19] | WEN C Y, JHU C Y, WANG Y W, et al. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2[J]. Journal of Thermal Analysis and Calorimetry, 2012, 109(3): 1297-1302. DOI: 10.1007/s10973-012-2573-2. |
| [20] | DUH Y S, THENG J H, CHEN C C, et al. Comparative study on thermal runaway of commercial 14500, 18650 and 26650 LiFePO4 batteries used in electric vehicles[J]. Journal of Energy Storage, 2020, 31: 101580. DOI: 10.1016/j.est.2020.101580. |
| [21] | LEI B X, ZHAO W J, ZIEBERT C, et al. Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter[J]. Batteries, 2017, 3(2): 14. DOI: 10.3390/batteries3020014. |
| [22] | KVASHA A, GUTIÉRREZ C, OSA U, et al. A comparative study of thermal runaway of commercial lithium ion cells[J]. Energy, 2018, 159: 547-557. DOI: 10.1016/j.energy.2018.06.173. |
| [23] | TANG W, TAM W C, YUAN L M, et al. Estimation of the critical external heat leading to the failure of lithium-ion batteries[J]. Applied Thermal Engineering, 2020, 179: 115665. DOI: 10.1016/j.applthermaleng.2020.115665. |
| [24] | 王浩, 李建军, 王莉, 等. 绝热加速量热仪在锂离子电池安全性研究方面的应用[J]. 新材料产业, 2013(1): 53-58. |
| WANG H, LI J J, WANG L, et al. Application of adiabatic accelerating rate calorimeter in safety research of lithium ion battery[J]. Advanced Materials Industry, 2013(1): 53-58. | |
| [25] | 王莉, 冯旭宁, 薛钢, 等. 锂离子电池安全性评估的ARC测试方法和数据分析[J]. 储能科学与技术, 2018, 7(6): 1261-1270. DOI: 10.12028/j.issn.2095-4239.2018.0161. |
| WANG L, FENG X N, XUE G, et al. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1261-1270. DOI: 10.12028/j.issn.2095-4239.2018.0161. | |
| [26] | PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89. DOI: 10.1016/j.jpowsour.2015.03.035. |
| [27] | WANG Q S, HUANG P F, PING P, et al. Combustion behavior of lithium iron phosphate battery induced by external heat radiation[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 961-969. DOI: 10.1016/j.jlp.2016.12.002. |
| [28] | WANG C J, ZHU Y L, GAO F, et al. Thermal runaway behavior and features of LiFePO4/graphite aged batteries under overcharge[J]. International Journal of Energy Research, 2020, 44(7): 5477-5487. DOI: 10.1002/er.5298. |
| [29] | PEIYAN Q I, JIE Z M, JIANG D, et al. Combustion characteristics of lithium-iron-phosphate batteries with different combustion states[J]. eTransportation, 2022, 11: 100148. DOI: 10.1016/j.etran. 2021.100148. |
| [30] | QIN P, JIA Z Z, WU J Y, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313: 118767. DOI: 10.1016/j.apenergy.2022.118767. |
| [31] | LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: 101714. DOI: 10.1016/j.est.2020.101714. |
| [32] | PENG Y, YANG L Z, JU X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: 120916. DOI: 10.1016/j.jhazmat.2019.120916. |
| [33] | ZHANG Y, MEI W X, QIN P, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116928. DOI: 10.1016/j.applthermaleng.2021.116928. |
| [34] | JIA Z Z, MIN Y Y, QIN P, et al. Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries[J]. Journal of Energy Chemistry, 2024, 89: 195-207. DOI: 10.1016/j.jechem. 2023.09.052. |
| [35] | ZHOU Z Z, ZHOU X D, WANG D, et al. Experimental analysis of lengthwise/transversal thermal characteristics and jet flow of large-format prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2021, 195: 117244. DOI: 10.1016/j.applthermaleng. 2021.117244. |
| [36] | LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. DOI: 10.1016/j.applthermaleng.2021.116949. |
| [37] | MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. DOI: 10.1016/j.rser.2021.110717. |
| [38] | WANG S P, SONG L F, LI C H, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery[J]. Journal of Energy Storage, 2023, 74: 109368. DOI: 10.1016/j.est.2023.109368. |
| [39] | JIA Z Z, WANG S P, QIN P, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating[J]. Journal of Energy Storage, 2023, 61: 106791. DOI: 10.1016/j.est. 2023.106791. |
| [40] | LIU Y, JU L R, JIA Z Z, et al. Experimental study on the internal pressure evolution of large-format LiFePO4 battery during thermal runaway[J]. Journal of Energy Storage, 2024, 102: 114196. DOI: 10. 1016/j.est.2024.114196. |
| [41] | JIA Z Z, WANG S P, QIN P, et al. Investigation of gas diffusion behavior and detection of 86 Ah LiFePO4 batteries in energy storage systems during thermal runaway[J]. Process Safety and Environmental Protection, 2024, 184: 579-588. DOI: 10.1016/j.psep. 2024.01.093. |
| [42] | CHENG Z X, WANG C D, MEI W X, et al. Thermal runaway evolution of a 280 Ah lithium-ion battery with LiFePO4 as the cathode for different heat transfer modes constructed by mechanical abuse[J]. Journal of Energy Chemistry, 2024, 93: 32-45. DOI: 10.1016/j.jechem.2024.01.073. |
| [43] | LI Z Y, YU Y, WANG J J, et al. Thermal runaway and gas venting behaviors of large-format prismatic sodium-ion battery[J]. Energy Storage Materials, 2025, 77: 104197. DOI: 10.1016/j.ensm. 2025. 104197. |
| [44] | LI Z Y, CHENG Z X, YU Y, et al. Thermal runaway comparison and assessment between sodium-ion and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2025, 193: 842-855. DOI: 10.1016/j.psep.2024.11.118. |
| [45] | WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. DOI: 10.1016/j.etran.2022.100190. |
| [1] | Ye CHEN, Jin LI, Ruilani ZHAO, Shaoyu ZHANG, Yuxi CHU, Kang YANG, Xiaoxue LIAO, Bo JIANG, Ping ZHUO. Comparative experimental study on thermal runaway propagation of battery modules under different states of charge [J]. Energy Storage Science and Technology, 2025, 14(9): 3402-3413. |
| [2] | Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions [J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529. |
| [3] | Yuxi CHU, Chang MA, Hongguang CHEN, Shaoyu ZHANG, Ping ZHUO. Thermal runaway and gas production characteristics of a 180 Ah sodium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(9): 3611-3618. |
| [4] | Chengshan XU, Han LI, Yan WANG, Languang LU, Xuning FENG, Minggao OUYANG. Research on fire propagation characteristics and energy transfer mechanisms during the triggering process in double-layer energy storage batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3552-3563. |
| [5] | Mingxuan LIU, Wentao CHEN, Shaopeng SHEN, Shijie ZHANG, zhen WEI, Biao MA, Danhua LI, Shiqiang LIU, Fang WANG. Research on accelerated aging and safety characteristics of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2025, 14(9): 3530-3537. |
| [6] | Bin YANG, Jun YANG, Lang XU, Haowei WEN, Dengfeng LIU, Dianbo RUAN. Ball-head indentation-induced safety evaluation of capacitive lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3090-3099. |
| [7] | Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage [J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050. |
| [8] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
| [9] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
| [10] | Zijing ZHANG, Beibei YUAN, Hong LI, Ying GAO. Thermal runaway gas detection and early warning of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2820-2832. |
| [11] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
| [12] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
| [13] | Peng PENG, Chengdong WANG, Man CHEN, Qingsong WANG, Qikai LEI, Kaiqiang JIN. Hazard assessment of thermal runaway in a lithium-titanate battery energy storage power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1617-1630. |
| [14] | Wenqiang FAN, Zinan SHI, Daiming YANG, Huishi LIANG, Ye CHEN. Experimental study on the suppression effect of different coolants on battery thermal runaway [J]. Energy Storage Science and Technology, 2025, 14(4): 1554-1563. |
| [15] | Yongqi LI, Zhiyuan LI, Youwei WEN, Chengdong WANG, Qiangling DUAN, Qingsong WANG. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||