储能科学与技术 ›› 2017, Vol. 6 ›› Issue (1): 85-93.doi: 10.12028/j.issn.2095-4239.2016.0110

• 研究开发 • 上一篇    下一篇

锂硫电池放电过程的热模拟

王宇晖1,2,靳  俊1,郭战胜2,温兆银1   

  1. 1中国科学院上海硅酸盐研究所,中国科学院能量转换材料重点实验室,上海 200050;
    2上海大学,上海市应用数学和力学研究所,上海 200072
  • 收稿日期:2016-05-25 修回日期:2016-06-21 出版日期:2017-01-03 发布日期:2017-01-03
  • 通讯作者: 郭战胜,副研究员,E-mail:davidzsguo@shu.edu.cn;温兆银,研究员,主要研究方向为钠电池及全固态锂电池、锂空气/锂硫等新型二次电池,E-mail:zywen@mail.sic.ac.cn。
  • 作者简介:王宇晖(1990—),男,硕士研究生,研究方向为锂硫电池的热模拟,E-mail:wangyuhui@student.sic.ac.cn。
  • 基金资助:
    国家自然科学基金项目(51402330,51372262,11472165)。

#br# Thermal simulation for lithium-sulfur battery during discharge process

WANG Yuhui1,2, JIN Jun1, GUO Zhansheng2, WEN Zhaoyin1   

  1. 1CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
  • Received:2016-05-25 Revised:2016-06-21 Online:2017-01-03 Published:2017-01-03

摘要: 目前已经实用化的各种电池基本都存在与热相关的安全问题,同样在锂硫电池中也有类似的问题。热模拟的方法可以预测电池在各种工作条件下的温度分布,从而有助于电池的性能优化及结构设计。本文采用热模拟的方法对锂硫电池进行研究,预测锂硫电池工作过程中的温度变化。通过测量锂硫电池在不同温度、不同放电深度下放电过程中的开路电压和工作电压,对锂硫电池的热生成速率进行计算,再利用有限元软件COMSOL Multiphysics对电池在不同环境温度及不同放电速率条件下的温度变化进行了瞬态模拟。通过模拟计算可以得到,在放电过程中,电池内温度先降低后升高;化学反应的可逆熵变产生的热量对温度的变化起主要作用,而不可逆变化产生的热量作用相对较小。

关键词: 锂硫电池, 温度场, 热模拟

Abstract: Currently batteries have heat-related security issues. Similar problems also exist in lithium-sulfur batteries. Thermal simulation method can be used to predict the temperature distribution of battery under various operating conditions, which will help optimize the performance and structure design of the battery. In this article, thermal simulation of lithium-sulfur battery was undertaken to explore the temperature of the battery during cycling. In order to study the heat generation rate in the use of battery, the open circuit voltage and operating voltage were firstly tested and used. A finite element software COMSOL Multiphysics was employed to simulate transient battery temperature at different ambient temperatures and different discharge rates. It was indicated by the simulation that the battery temperature first decreased and then increased in the discharge process. Furthermore, we proposed that reversible entropy change played a major role in the change of battery temperature.

Key words: lithium-sulfur battery, temperature field, thermal simulation