• 储能XXXX •
朱信龙, 王敏俊, 徐鑫甜, 张倩维, 王均毅, 施红
摘要:
近年来,电动汽车技术和新能源电站储能技术发展迅猛,这些技术对所使用的电池要求越来越高。锂电池因其转换效率高、能量密度大、环境友好等优点,具有较好的应用前景。但锂电池的使用寿命、安全性等特性受温度的影响较大,需要对其进行有效的热管理研究。针对此问题,本文主要分析了锂电池的温度特性,总结了锂电池在电动汽车和储能电站中的应用情况以及热释放特点,比较了目前已有的锂电池热管理技术。最后指出了动力锂电池热管理系统轻量化、经济化的发展方向。
中图分类号:
朱信龙, 王敏俊, 徐鑫甜, 张倩维, 王均毅, 施红. 锂电池系统热管理技术研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2021.0046.
1 | 张子峰,王林,陈东红. 集装箱储能系统散热及抗震性研究[J]. 储能科学与技术,2013,2(6):642-648. |
Zhang ZF, Wang L, Chen DH. Research on heat dissipation and seismic resistance of containerized energy storage system[J]. Energy Storage Science and Technology, 2013, 2(6):642-648. | |
2 | 赛迪智库电子信息产业研究所.«锂离子电池产业发展白皮书(2017)»发布[J]. |
Institute of Electronic Information Industry, Saedi Intelligence. White Paper on Lithium-ion Battery Industry Development (2017) [J]. | |
3 | 谢潇怡,王莉,何向明, 等.锂离子动力电池安全性问题影响因素[J].储能科学与技术,2017,6(1):43-51. |
XIE X Y, WANG L, HE X M, et al. Factors influencing the safety issues of lithium-ion power batteries[J]. Energy Storage Science and Technology,2017,6(1):43-51. | |
4 | WANG S Q, LU L G, REN D S, et al. Experimental investigation on the feasibility of heat pipe-based thermal management system to prevent thermal runaway propagation [J]. Electrochem Energy Convers Storage, 2019, 16: 031006. |
5 | WANG K, GAO F, ZHU Y L, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge [J]. Energy, 2018, 149: 364-374. |
6 | 马勇,张量,王亦伟,蒋方明.储能用LiFePO4锂离子电池的热安全特性电池:1-5[2021-01-30]. |
Ma Y, Zhang Q, Wang YW, Jiang FM. Thermal safety characteristics of LiFePO4 lithium-ion batteries for energy storage Cell:1-5 [2021-01-30]. | |
7 | Rui Zhao, Junjie Gu, Jie Liu. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. 2015, 273:1089-1097. |
8 | Feng X, Sun J, Ouyang M, et al. Characterization of large format lithium ion battery exposed to extremely high temperature[J].Journal of Power Sources,2014,272 (Dec.25):457-467 |
9 | Li D, Danilov DL, Gao L, et al. Degradation Mechanisms of C6/LiFePO4 Batteries: experimental analyses of cycling-induced aging[J]. Electrochimica Acta,2016;210:445-445. |
10 | Amine K, Liu J, Belharouak I. High-temperature storage and cycling of C-LiFePO 4 /graphite Li-ion cells. 2005, 7(7):669-673. |
11 | Amine K, Liu J, Kang S, et al. Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. 2003, 129(1):14-19. |
12 | Zheng H, Sun Q, Liu G, et al. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells[J]. Journal of Power Sources,2012,207(Jun.1):134-140. |
13 | 赵世玺,郭双桃,赵建伟,等. 锂离子电池低温特性研究进展[J]. 硅酸盐学报, 2016, 44(1): 19-28. |
ZHAO SX, GUO S, ZHAO JW et al. Development on low-temperature performance of lithium-ion batteries[J]. Journal of the Chinese Ceramic Society, 2016, 44(1): 19-28. | |
14 | Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. 2003, 113(1):81-100. |
15 | Larcher D, MacNeil D, Dahn J. Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature[J]. Journal of the Electrochemical Society,1999,146(10):3596-3602. |
16 | Feng X, Fang M, He X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. 2014, 255:294-301. |
17 | WARNER J. The handbook of lithium-ion battery pack design[J]. Journal of Rare Earths, 2015, 32(2): 217-222. |
18 | Dickinson B E , Swan D H . EV Battery Pack Life: Pack Degradation and Solutions[C]// Future Transportation Technology Conference & Exposition. 1995. |
19 | 邹政耀,王若平.新能源汽车技术[M].北京:国防工业出版社,2012. |
Zou ZY, Wang RP. New energy vehicle technology [M]. Beijing: National Defense Industry Press, 2012. | |
20 | 陈雪莲,张存善,安然.电池热管理及电池安全技术[J].电源技术, 2020,44 (8):1177-1181. |
Chen X, Zhang C, An R. Battery thermal management and battery safety technology[J]. Power Technology,2020,44(8):1177-1181. | |
21 | Wada M. Research and development of electric vehicles for clean transportation[J]. Journal of Environmental Sciences-China,2009,21(6):745-749. |
22 | Park C W,Jaura A K,Dynamic thermal model of Li-ion battery for predictive behavior in hybrid and fuel cell vehicles[J]. Society of Automotive Engineers,2003,01:2286. |
23 | 白雪平. 磷酸铁锂电池储能系统的应用[J]. 高科技与产业化, 2016, 4: 71-73. |
BAI X. Application of lithium-ion battery energy storage system[J]. High-Technology and Industrialization, 2016, 4: 71-73. | |
24 | 曾乐才. 储能锂离子电池产业化发展趋势[J].上海电气技术, 2012, 5(1): 43-48. |
ZENG L. Research and analysis of Li-ion battery industry development for energy storage[J]. Journal of shanghai Electric Technology, 2012, 5(1): 43-48 | |
25 | 陆志刚, 王科, 刘怡, 等. 深圳宝清锂电池储能电站关键技术及系统成套设计方法[J]. 电力系统自动化, 2013, 37(1): 65-69. |
LU Zhigang, WANG Ke, LIU Yi, et al. Research and application of megawatt scale lithium-ion battery energy storage station and key technology[J]. Automation of Electric Power System, 2013, 37(1): 65-69. | |
26 | 罗军, 田刚领, 张柳丽, 等. 集装箱式储能系统温度特性研究[J]. 电器与能效管理技术, 2019(9): 48-52. |
LUO J, TIAN G, ZHANG L, et al. Research on temperature characteristics of container energy storage system[J]. Electrical Appliances and Energy Efficiency Management Technology, 2019(9): 48-52. | |
27 | 逯彦红,段国林.车用锂电池散热方法研究[J].电源技术, 2016,40(12):2476-2478. |
Lu Yanhong, Duan G. Research on heat dissipation methods for automotive lithium batteries[J]. Power Technology, 2016,40(12):2476-2478. | |
28 | FAN L, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238: 301-312. |
29 | YU K, YANG X, CHENG Y, et al. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack[J]. Journal of Power Sources, 2014, 270(4): 193-200. |
30 | 李金芳,叶琪超,应光耀, 等.基于CFD的储能集装箱散热系统流场优化[J].浙江电力,2020,39(6):94-98. |
Li JF, Ye QC, Ying GY, et al. CFD-based flow field optimization of energy storage container heat dissipation system[J]. Zhejiang Electric Power,2020,39(6):94-98. | |
31 | 李淼林,臧孟炎,谢金红,李长玉,程清伟.锂离子电池组风冷散热仿真与优化[J].电源技术,2019,43(11):1805-1809. |
Li M, Zang M, Xie J, Li C, Cheng Q. Simulation and optimization of air-cooled heat dissipation in lithium-ion battery packs[J]. Power Technology,2019,43(11):1805-1809. | |
32 | 王晓松,游峰,张敏吉,孙洋洲.集装箱式储能系统数值仿真模拟与优化[J].储能科学与技术,2016,5(04):577-582. |
Wang X, You F, Zhang M, Sun Oceania. Numerical simulation simulation and optimization of containerized energy storage system[J]. Energy Storage Science and Technology,2016,5(04):577-582. | |
33 | 杨凯杰,裴后举,朱信龙, 等.某型集装箱储能电池模块的热设计研究及优化[J].储能科学与技术,2020,9(6):1858-1863. |
YANG Kaijie, PUI Houju, ZHU Xinlong, et al. Thermal design research and optimization of a certain type of container energy storage battery module[J]. Energy Storage Science and Technology,2020,9(6):1858-1863. | |
34 | Fan L W, Khodadadi J M, Pesaran A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238: 301-312. |
35 | 邹燚涛,裴后举,施红,等.某型集装箱储能电池组冷却风道设计及优化[J].储能科学与技术,2020,9(6):1864-1871. |
Zou Xiaotao, Pei Houju, Shi Hong, et al. Design and optimization of cooling ducts for a certain type of containerized energy storage battery pack[J]. Energy Storage Science and Technology,2020,9(6):1864-1871. | |
36 | HUO Y, RAO Z, LIU X, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion & Management, 2015, 89: 387-395. |
37 | PANCHAL S, DINCER I, AGELIN-CHAAB M, et al. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99: 204-212. |
38 | HUO Y, RAO Z, LIU X, et al. Investigation of power battery thermal management by using mini-channel cold plate [J]. Energy Conversion & Management, 2015, 89: 387-395. |
39 | 张上安.混合动力车用锂电池组液体冷却散热机理研究[D]. 湖南大学,2013. |
Zhang Shangan. Research on liquid cooling and heat dissipation mechanism of lithium battery pack for hybrid vehicles[D]. Hunan University, 2013. | |
40 | 裴波,王磊,杨栋梁, 等.基于浸没式液冷冷却的锂电池热管理系统数值计算研究[J].船电技术,2020,40(11):1-5. |
Pei Bo, Wang Lei, Yang Dongliang, et al. Numerical calculation of thermal management system for lithium batteries based on submerged liquid-cooled cooling[J]. Marine Electric Technology,2020,40(11):1-5. | |
41 | Zhou, Haobing,Zhou, Fei,Zhang, Qian, et al.Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct[J].Applied thermal engineering: Design, processes, equipment, economics,2019,162. |
42 | WEI T, SOMASUNDARAM K, BIRGERSSON E, et al. Numerical investigation of water cooling for a lithium-ion bipolar battery pack[J]. International Journal of Thermal Sciences, 2015, 94: 259-269. |
43 | Mao-Sung Wua K H L, Yung-Yun Wangb, Chi-Chao Wanb. Heat dissipation design for lithium-ion batteries [J]. Journal of Power Sources, 2002, 109(1): 160-166. |
44 | Jang J C,Rhi S H. Battery thermal management system of future electric vehicles with loop thermosyphon[C]//US-Korea Conference on Science,Technology,and Entrepreneurship (UKC). 2010. |
45 | TRAN T H, HARMAND S, SAHUT B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery [J]. Journal of Power Sources, 2014, 265(11): 262-272. |
46 | Swanepoel G. Thermal management of hybrid electrical vehicles using heat pipes[D]. Stellenbosch: Department of Mechanical Engineering University of Stellenbosch,2001. |
47 | 陈萌,李静静.脉动热管用于电动汽车锂电池散热性能试验[J/OL].化工进展:1-11[2021-01-30]. |
Chen M, Li JJ. Pulsating heat pipe for electric vehicle lithium battery heat dissipation performance test [J/OL]. Chemical Progress:1-11 [2021-01-30]. | |
48 | Khateeb Siddique A,Farid Mohammed M,Selman J Robert,et al. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter[J]. Journal of Power Sources,2004,128:292-307 |
49 | Khateeb Siddique A,Amiruddin Shabab,Selman J Robert,et al. Thermal management of Li-ion battery with phase change material for electric scooters:Experimental validation[J]. Journal of Power Sources,2005,142:345-353 |
50 | WANG Z, ZHANG Z, JIA L, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436. |
51 | LI W Q, QU Z G, HE Y L, et al. Experimental study of a passive thermal management system for high-powered lithium-ion batteries using porous metal foam saturated with phase change materials[J]. Journal of Power Sources, 2014, 255(6): 9-15. |
52 | MILLS A, AL-HALLAJ S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of Power Sources, 2005, 141(2): 307-315. |
53 | GOLI P, LEGEDZA S, DHAR A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources, 2014, 248(7): 37-43. |
54 | BABAPOOR A, AZIZI M, KARIMI G. Thermal management of a Li-ion battery using carbon fiber-PCM composites[J]. Applied Thermal Engineering, 2015, 82(2): 281-290. |
55 | BIBIN C, VIJAYARAM M, SURIYA V, et al. A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system[J]. Materials today: proceedings, 2020. DOI: 10.1016/j.matpr.2020.03.317. |
56 | 朱波,杜如海,姚明尧,赵媛媛,张毅.基于相变材料的纯电动汽车电池热管理研究.电源技术,2020,1666-1670. |
Zhu Bo, Du Ruhai, Yao Mingyao, Zhao Yuanyuan, Zhang Yi. Thermal management of pure electric vehicle batteries based on phase change materials. Power Technology,2020,1666-1670. | |
57 | FATHABADI H. High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles[J]. Energy, 2014,70:529-538. |
58 | BAI F F, CHEN MB, SONG W J, et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied thermal engineering, 2017, 126: 17-27. |
59 | Zhao J T, LV P Z, RAO Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics,2017,82:182-188. |
[1] | 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置[J]. 储能科学与技术, 2022, 11(7): 2241-2249. |
[2] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[3] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[4] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[5] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[6] | 韩健民, 薛飞宇, 梁双印, 乔天舒. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
[7] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[8] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
[9] | 袁性忠, 胡斌, 郭凡, 严欢, 贾宏刚, 苏舟. 欧盟储能政策和市场规则及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2344-2353. |
[10] | 刘国静, 李冰洁, 胡晓燕, 岳芬, 徐际强. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2332-2343. |
[11] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[12] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[13] | 吴田, 林闽城, 海浩, 孙海渔, 温兆银, 马福元. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. |
[14] | 徐光福, 姜淼, 王万纯, 魏阳, 侯炜. 大型储能电池短路故障分析与保护策略[J]. 储能科学与技术, 2022, 11(7): 2222-2232. |
[15] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||