1 |
李相俊, 马会萌, 姜倩. 新能源侧储能配置技术研究综述[J]. 中国电力, 2022, 55(1): 13-25. DOI: 10.11930/j.issn.1004-9649.2021 09032.
|
|
LI X J, MA H M, JIANG Q. Review of energy storage configuration technology on renewable energy side[J]. Electric Power, 2022, 55(1): 13-25. DOI: 10.11930/j.issn.1004-9649.202109032.
|
2 |
田蓓, 王朝晖, 张爽, 等. 面向风光综合消纳的电力系统广域储能容量优化配置研究[J]. 智慧电力, 2020, 48(6): 67-72.
|
|
TIAN B, WANG Z H, ZHANG S, et al. Wide-area optimized allocation of energy storage capacity considering wind/photovoltaic power accommodation in power systems[J]. Smart Power, 2020, 48(6): 67-72.
|
3 |
夏新茂, 关洪浩, 丁鹏飞, 等. 基于改进型量子遗传算法的储能系统容量配置与优化策略[J]. 储能科学与技术, 2019, 8(3): 551-558.
|
|
XIA X M, GUAN H H, DING P F, et al. Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm[J]. Energy Storage Science and Technology, 2019, 8(3): 551-558.
|
4 |
马速良, 马会萌, 蒋小平, 等. 基于Bloch球面的量子遗传算法的混合储能系统容量配置[J]. 中国电机工程学报, 2015, 35(3): 592-599. DOI: 10.13334/j.0258-8013.pcsee.2015.03.011.
|
|
MA S L, MA H M, JIANG X P, et al. Capacity configuration of the hybrid energy storage system based on the Bloch spherical quantum genetic algorithm[J]. Proceedings of the CSEE, 2015, 35(3): 592-599. DOI: 10.13334/j.0258-8013.pcsee.2015.03.011.
|
5 |
张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14): 40-48. DOI: 10.19595/j.cnki.1000-6753.tces.2016.14.005.
|
|
ZHANG Q, LI X R, YANG M, et al. Capacity determination of a hybrid energy storage system for smoothing wind power fluctuations with maximum net benefit[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 40-48. DOI: 10.19595/j.cnki.1000-6753.tces. 2016.14.005.
|
6 |
董昱, 范高锋, 董存, 等. 电力系统配置储能分析计算方法[J]. 中国电力, 2022, 55(1): 26-36. DOI: 10.11930/j.issn.1004-9649.202101138.
|
|
DONG Y, FAN G F, DONG C, et al. Analysis and calculation of the energy storage configuration in power system[J]. Electric Power, 2022, 55(1): 26-36. DOI: 10.11930/j.issn.1004-9649.2021 01138.
|
7 |
曾紫光. 基于经济效益的风/储系统容量优化配置及研究[D]. 南昌: 南昌大学, 2014.
|
8 |
曹一家, 王光增, 曹丽华, 等. 基于潮流熵的复杂电网自组织临界态判断模型[J]. 电力系统自动化, 2011, 35(7): 1-6.
|
|
CAO Y J, WANG G Z, CAO L H, et al. An identification model for the self-organized criticality of power grids based on power flow entropy[J]. Automation of Electric Power Systems, 2011, 35(7): 1-6.
|
9 |
赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56(5): 193-202.
|
|
ZHAO Y S, LIN W F. Research on typical scenarios based on the fusion density peak value and entropy weight method of Pearson's correlation coefficient[J]. Electric Power, 2023, 56(5): 193-202.
|
10 |
蒋群. 电力系统可靠性裕度评估[D]. 北京: 华北电力大学, 2011.
|
11 |
翟峰, 冯云, 程凯, 等. 基于信息熵的多源电力物联终端设备信任度评价方法[J]. 中国电力, 2022, 55(5): 158-165.
|
|
ZHAI F, FENG Y, CHENG K, et al. Information entrop-basedd multisource power IoT terminal equipment trust degree evaluation method[J]. Electric Power, 2022, 55(5): 158-165.
|
12 |
徐艳春, 赵彩彩, 孙思涵, 等. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143.
|
|
XU Y C, ZHAO C C, SUN S H, et al. Fault location for the active distribution network based on improved LMD and energy relative entropy[J]. Electric Power, 2021, 54(11): 133-143.
|
13 |
钟静, 吕飞鹏, 孔德洪, 等. 基于加权潮流转移熵的电网脆弱线路辨识[J]. 电测与仪表, 2016, 53(10): 22-26. DOI: 10.3969/j.issn.1001-1390.2016.10.004.
|
|
ZHONG J, LV F P, KONG D H, et al. Vulnerable line identification of the power grid based on the weighted transfer entropy of the power flow[J]. Electrical Measurement & Instrumentation, 2016, 53(10): 22-26. DOI: 10.3969/j.issn.1001-1390.2016.10.004.
|
14 |
李志民, 李卫星, 王永建. 基于熵理论的最优潮流代理约束算法[J]. 电力系统自动化, 2001, 25(11): 28-31. DOI: 10.3321/j.issn: 1000-1026.2001.11.007.
|
|
LI Z M, LI W X, WANG Y J. Surrogate constraint algorithm for the optimal power flow based on the entropy theory[J]. Automation of Electric Power Systems, 2001, 25(11): 28-31. DOI: 10.3321/j.issn: 1000-1026.2001.11.007.
|
15 |
朱成骐, 孙宏斌, 张伯明. 基于最大信息熵原理的短期负荷预测综合模型[J]. 中国电机工程学报, 2005, 25(19): 1-6. DOI: 10.13334/j. 0258-8013.pcsee.2005.19.001.
|
|
ZHU C Q, SUN H B, ZHANG B M. A combined model for short-term load forecasting based on maximum entropy principle[J]. Proceedings of the CSEE, 2005, 25(19): 1-6. DOI: 10.13334/j.0258-8013.pcsee.2005.19.001.
|
16 |
谢敬东, 陆池鑫, 鲁思薇, 等. 基于序关系-熵权法的电力市场风险评估[J]. 中国电力, 2021, 54(6): 71-78. DOI: 10.11930/j.issn.1004-9649.202006099.
|
|
XIE J D, LU C X, LU S W, et al. Electricity market risk evaluation based on the order relation-entropy weight method[J]. Electric Power, 2021, 54(6): 71-78. DOI: 10.11930/j.issn.1004-9649.2020 06099.
|
17 |
管霖, 卓映君, 周保荣, 等. 复杂波动时间序列的多尺度分解算法及其在可再生能源发电建模应用中的性能评估[J]. 南方电网技术, 2020, 14(6): 11-16, 32. DOI: 10.13648/j.cnki.issn1674-0629.2020. 06.002.
|
|
GUAN L, ZHUO Y J, ZHOU B R, et al. Multi-scale decomposition algorithms for complicated fluctuant time series and their performance evaluation in renewable energy generation modeling[J]. Southern Power System Technology, 2020, 14(6): 11-16, 32. DOI: 10.13648/j.cnki.issn1674-0629.2020.06.002.
|
18 |
陈中, 胡吕龙, 丁楠. 基于改进熵的风光储互补并网系统优化运行[J]. 电力系统保护与控制, 2013, 41(21): 86-91.
|
|
CHEN Z, HU L, DING N. Optimized operation of the wind-solar-battery hybrid power system based on improved entropy[J]. Power System Protection and Control, 2013, 41(21): 86-91.
|
19 |
ZHOU G Y, CHAN C C, ZHANG D, et al. Smart energy evolution roadmap based on the correlation between energy and information[J]. Energy Procedia, 2019, 158: 3082-3087. DOI: 10.1016/j.egypro.2019.01.997.
|
20 |
孙振新, 张秩鸣, 马俯波, 等. 基于熵理论的能量调节性能研究[J]. 储能科学与技术, 2024, 13(5): 1584-1591. DOI: 10.19799/j.cnki. 2095-4239.2023.0940.
|
|
SUN Z X, ZHANG Z M, MA F B, et al. Research on energy regulation performance based on entropy theory[J]. Energy Storage Science and Technology, 2024, 13(5): 1584-1591. DOI: 10.19799/j.cnki.2095-4239.2023.0940.
|
21 |
孙振新, 李海昭, 张秩鸣, 等. 克劳修斯熵在多时间尺度储能配置问题上的应用[J]. 热力发电, 2024, 53(9): 92-99. DOI: 10.19666/j.rlfd.202404081.
|
|
SUN Z X, LI H Z, ZHANG Z M, et al. Application of Clausius entropy to energy storage configuration problems at multitime scale[J]. Thermal Power Generation, 2024, 53(9): 92-99. DOI: 10.19666/j.rlfd.202404081.
|