储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2149-2192.doi: 10.19799/j.cnki.2095-4239.2025.0553
• 特约评述 • 下一篇
陈海生1(), 李泓2, 徐玉杰1, 徐德厚3, 王亮1, 周学志1, 陈满4, 胡东旭1, 林海波12, 李先锋5, 胡勇胜2, 安仲勋6, 刘语1, 肖立业7, 蒋凯8, 钟国彬9, 王青松10, 李臻11, 康飞宇14, 王选朋15, 尹钊1, 戴兴建1, 林曦鹏1, 朱轶林1, 张弛1, 张宇鑫1, 刘为11, 岳芬11, 张长昆5, 俞振华11, 党荣彬2, 邱清泉7, 陈仕卿1, 史卓群1, 张华良1, 李浩秒8, 徐成8, 周栋14, 司知蠢14, 宋振11, 赵新宇16, 刘轩13, 梅文昕10
收稿日期:
2025-06-11
修回日期:
2025-06-16
出版日期:
2025-06-28
发布日期:
2025-06-27
通讯作者:
陈海生
E-mail:chen_hs@iet.cn
作者简介:
陈海生(1977—),男,研究员,博士,研究方向为大规模储能技术、叶轮机械内部流动、限定尺度传热等,E-mail:chen_hs@iet.cn基金资助:
Haisheng CHEN1(), Hong LI2, Yujie XU1, Dehou XU3, Liang WANG1, Xuezhi ZHOU1, Man CHEN4, Dongxu HU1, Haibo LIN12, Xianfeng LI5, Yongsheng HU2, Zhongxun AN6, Yu LIU1, Liye XIAO7, Kai JIANG8, Guobin ZHONG9, Qingsong WNAG10, Zhen LI11, Feiyu KANG14, Xuanpeng WANG15, Zhao YIN1, Xingjian DAI1, Xipeng LIN1, Yilin ZHU1, Chi ZHANG1, Yuxin ZHANG1, Wei LIU11, Fen YUE11, Changkun ZHANG5, Zhenhua YU11, Rongbin DANG2, Qingquan QIU7, Shiqing CHEN1, Zhuoqun SHI1, Hualiang ZHANG1, Haomiao LI8, Cheng XU8, Dong ZHOU14, Zhichun SI14, Zhen SONG11, Xinyu ZHAO16, Xuan LIU13, Wenxin MEI10
Received:
2025-06-11
Revised:
2025-06-16
Online:
2025-06-28
Published:
2025-06-27
Contact:
Haisheng CHEN
E-mail:chen_hs@iet.cn
摘要:
本文对2024年度中国储能技术的研究进展进行了综述。通过对基础研究、关键技术和集成示范三方面的回顾和分析,总结得出了2024年中国储能技术领域的主要技术进展,包括抽水蓄能、压缩空气储能、飞轮储能、铅蓄电池、锂离子电池、液流电池、钠离子电池、超级电容器、新型储能技术、集成技术和消防安全技术等。综合分析表明中国储能又经历了高速发展的一年,在基础研究、关键技术和集成示范方面均有重要进展。中国保持了世界储能技术基础研究、技术研发和集成示范领域最为活跃的国家地位。中国机构和学者在储能领域发表SCI论文数、申请WIPO国际发明专利数、新增集成示范和产业化项目装机容量均居世界第一;新型储能装机功率首次超过抽水蓄能,迎来历史性时刻,总体上中国储能实现了规模化发展。
中图分类号:
陈海生, 李泓, 徐玉杰, 徐德厚, 王亮, 周学志, 陈满, 胡东旭, 林海波, 李先锋, 胡勇胜, 安仲勋, 刘语, 肖立业, 蒋凯, 钟国彬, 王青松, 李臻, 康飞宇, 王选朋, 尹钊, 戴兴建, 林曦鹏, 朱轶林, 张弛, 张宇鑫, 刘为, 岳芬, 张长昆, 俞振华, 党荣彬, 邱清泉, 陈仕卿, 史卓群, 张华良, 李浩秒, 徐成, 周栋, 司知蠢, 宋振, 赵新宇, 刘轩, 梅文昕. 2024年中国储能技术研究进展[J]. 储能科学与技术, 2025, 14(6): 2149-2192.
Haisheng CHEN, Hong LI, Yujie XU, Dehou XU, Liang WANG, Xuezhi ZHOU, Man CHEN, Dongxu HU, Haibo LIN, Xianfeng LI, Yongsheng HU, Zhongxun AN, Yu LIU, Liye XIAO, Kai JIANG, Guobin ZHONG, Qingsong WNAG, Zhen LI, Feiyu KANG, Xuanpeng WANG, Zhao YIN, Xingjian DAI, Xipeng LIN, Yilin ZHU, Chi ZHANG, Yuxin ZHANG, Wei LIU, Fen YUE, Changkun ZHANG, Zhenhua YU, Rongbin DANG, Qingquan QIU, Shiqing CHEN, Zhuoqun SHI, Hualiang ZHANG, Haomiao LI, Cheng XU, Dong ZHOU, Zhichun SI, Zhen SONG, Xinyu ZHAO, Xuan LIU, Wenxin MEI. Research progress on China’s energy storage technology in 2024[J]. Energy Storage Science and Technology, 2025, 14(6): 2149-2192.
表1
2024年中国储能关键技术与示范进展"
序号 | 技术类型 | 关键技术进展 | 集成示范进展 |
---|---|---|---|
1 | 抽水蓄能 | ①300 MW及以上大容量变速抽蓄机组设备制造技术②抽蓄机组在线故障诊断技术③高寒高海拔水风光储一体化技术 | ①360万千瓦/4000万千瓦时双世界第一的丰宁抽蓄电站全面投产发电②国内首个在软岩地区建设的大型抽蓄电站蟠龙电站投运③突破气泡防冰技术东北地区最大的抽蓄电站清原电站投运等 |
2 | 压缩空气储能 | ①300MW级先进压缩空气储能系统设计与调控技术②组合式压缩机和轴流式膨胀机技术③高效低阻的蓄热换热技术④储能-电力系统耦合控制技术 | ①山东肥城300 MW/1800 MWh盐穴压缩空气储能电站并网发电②宁夏中宁项目完成105 MW全球单机功率最大电动机吊装③中储国能、大唐集团、华能集团、中国电建、中国能建以及三峡集团等企业积极参与,产业发展进入快车道 |
3 | 储热储冷 | ①多种储热系统控制与优化技术②仿生海螺和仿生线粒体封装模型、相变材料胶囊设计等潜热储热技术③LNG冷能回收-冷冻淡化-蓄热耦合系统冷能存储技术等 | ①济宁加热功率50 MW,储能容量100 MWh热电熔盐储能项目并网投产②玉门100 MW光热储能工程机组顺利并网发电③5 MWh熔盐储能项目实现并汽发电④山西朔州20 MWh喷淋式填充床储热项目建设完成 |
4 | 飞轮储能 | ①飞轮-锂电池联合调频技术②新型阻尼器振动抑制技术③电机定子低温蒸发冷却转子高辐射涂层热控制技术等 | ①国内首套具备转动惯量支撑的构网型飞轮储能系统上电成功②国内首个兆瓦级飞轮混合储能示范工程实现风储一次调频通过 |
5 | 铅蓄电池 | ①采用有机铅络合沉淀策略的电解液添加技术②介孔氟掺杂碳材料等延长电极寿命技术③原料节约型、固废再循环等绿色生产技术 | ①江苏300 MWh铅碳储能开工建设②40 MW/80 MWh独立储能项目全容量并网③0.5 MW/2 MWh铝基铅炭储能系统并网运行④千万kVAh产能的铅碳电池生产基地开工建设等 |
6 | 锂离子电池 | ①500 Ah以上大容量电芯②匹配大容量电芯的叠片式极片工艺技术③全液冷关键技术,温控效率提升50%④锂电池动态监测技术等 | ①国内单体规模最大的505 MW磷酸铁锂电池储能电站在内蒙古成功并网②全球首个电网侧大规模固态电池储能电站-浙江龙泉磷酸铁锂储能示范项目完成并网投运,规模达100 MW/200 MWh等 |
7 | 液流电池 | ①高能量密度低容量衰减的电解液制备技术②新型电极材料设计技术③非氟离子传导膜构建技术④全铁液流电池、铁铬液流电池、硫基液流电池和水系有机液流电池等多种技术路线 | ①国内首套严寒地区100 MW/400 MWh松原电站成功并网②交付/投运液流电池储能项目35个 |
8 | 钠离子电池 | ①长寿命大容量电芯技术②聚阴离子类正极材料技术③宽温域性能优化技术等 | ①南网10 MWh钠离子电池储能系统实现规模化应用②湖北100 MWh钠离子电池储能系统的实现商业化运行 |
9 | 超级电容器 | ①绿色电极材料技术②界面工程优化技术③超薄纤维素复合隔膜高功率核心制备技术等 | ①5 MW超级电容+15 MW锂电池混合储能调频系统正式投运②氢燃料电池+超级电容混合动力系统,实现600公里续航③高集成度微型超级电容器储能模块等 |
10 | 储能新技术 | ①液态金属电池②热泵储电技术③重力储能技术④水系电池技术⑤钾离子电池⑥AI+储能技术等 | — |
11 | 集成技术 | ①植入式电池内部信号采集安全防控技术②大规模构网型储能多机并联集成控制技术等③5 MWh成为电池单舱储能容量主流 | ①构网型锂+钠混合装机容量为200 MW独立储能项目并网运行②海南州35 kV高压直挂式150 MW/600 MWh储能电站项目并网运行,是全球海拔最高、规模最大的高压直挂储能电站 |
12 | 消防安全技术 | ①采用可变导热性材料、阻燃改性相变材料、耦合新型热管管理等主被动散热技术②智能监测电池内部电化学信号的热失控在线预警技术③新型微胞囊新型灭火技术等 | ①采用先进热管理技术的西藏阿里60 MW项目成功落地②采用新的储能变流温控技术和液氮灭火技术的10 MWh钠离子电池储能电站投运 |
1 | 国家发展改革委 国家能源局. "十四五"新型储能发展实施方案: 发改能源〔2022〕209号[EB/OL]. (2022-01-29). https://zfxxgk.nea.gov.cn/2022-01/29/c_1310523208.htm. |
2 | 国家能源局. 关于促进新型储能并网和调度运用的通知: 国能发科技〔2024〕26号[EB/OL]. (2024-04-02). https://zfxxgk.nea.gov.cn/2024-04/02/c_1310771072.htm. |
3 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki.2095-4239.2022.0105. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki. 2095-4239.2022.0105. | |
4 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330. | |
5 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
6 | 刘帅, 李天国, 黄晓龙, 等. 调整段长度对抽水蓄能电站侧式进/出水口水力特性影响研究[J/OL]. 长江科学院院报, 2024: 1-9. (2024-12-27). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CJKB2024122500K&dbname=CJFD&dbcode=CJFQ. |
LIU S, LI T G, HUANG X L, et al. Study on influence of adjusting section length on hydraulic characteristics of side inlet/outlet of pumped storage power station[J/OL]. Journal of Yangtze River Scientific Research Institute, 2024: 1-9. (2024-12-27). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CJKB2024122500K&dbname=CJFD&dbcode=CJFQ. | |
7 | 陈永焱, 陈帝伊, 邓宇闻, 等. 初始转速与导叶控制策略对变速抽水蓄能机组泵断电过程影响规律研究[J]. 振动与冲击, 2024, 43(11): 102-110. DOI: 10.13465/j.cnki.jvs.2024.11.012. |
CHEN Y Y, CHEN D Y, DENG Y W, et al. Effects of initial rotating speed and guide vane control strategy on pump power outage process of variable speed pumped storage unit[J]. Journal of Vibration and Shock, 2024, 43(11): 102-110. DOI: 10.13465/j.cnki.jvs.2024.11.012. | |
8 | 于安, 陈磊, 唐亦波, 等. 变速抽水蓄能机组水力性能和尾水管涡流特性研究[J]. 水动力学研究与进展A辑, 2024, 39(6): 916-924. DOI: 10.16076/j.cnki.cjhd.2024.06.012. |
YU A, CHEN L, TANG Y B, et al. Hydraulic performance and draft tube internal flow characteristics in variable-speed pump turbine[J]. Chinese Journal of Hydrodynamics, 2024, 39(6): 916-924. DOI: 10.16076/j.cnki.cjhd.2024.06.012. | |
9 | 李延频, 张启帆, 张自超. 基于正交试验的斜流泵改造能量特性优化研究[J]. 水电能源科学, 2025, 43(2): 186-190. DOI: 10.20040/j.cnki.1000-7709.2025.20240682. |
LI Y P, ZHANG Q F, ZHANG Z C. Optimization study on energy characteristics of oblique flow pump retrofitting based on orthogonal experiments[J]. Water Resources and Power, 2025, 43(2): 186-190. DOI: 10.20040/j.cnki.1000-7709.2025.20240682. | |
10 | 徐振鹏, 陈青生, 徐津. 抽水蓄能电站同发同抽运行下竖井式进/出水口的水力特性研究[J]. 水电能源科学, 2025, 43(2): 181-185. DOI: 10.20040/j.cnki.1000-7709.2025.20241579. |
XU Z P, CHEN Q S, XU J. Study on hydraulic characteristics of shaft inlet/outlet based on single-shot and single-pump storage station[J]. Water Resources and Power, 2025, 43(2): 181-185. DOI: 10.20040/j.cnki.1000-7709.2025.20241579. | |
11 | 卢庆辉, 尹项根, 乔健, 等. 变速抽蓄机组失磁故障分析及保护研究[J]. 电工技术学报, 2024, 39(5): 1390-1403. DOI: 10.19595/j.cnki. 1000-6753.tces.222376. |
LU Q H, YIN X G, QIAO J, et al. Study on loss of excitation fault analysis and protection of variable speed pumped storage units[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1390-1403. DOI: 10.19595/j.cnki.1000-6753.tces.222376. | |
12 | KANG H Y, WANG J, LIU L Y, et al. Analysis and optimization of unbalanced magnetic pull for eccentric doubly-fed induction motor[C]//2024 International Conference on Electrical Machines (ICEM). September 1-4, 2024, Torino, Italy. IEEE, 2024: 1-7. DOI: 10.1109/ICEM60801.2024.10700145. |
13 | 丁景焕, 郑一鸣, 桂中华, 等. 定速与变速抽水蓄能机组联合运行一、二次调频仿真及特性研究[J]. 水电能源科学, 2024, 42(7): 183-187. DOI: 10.20040/j.cnki.1000-7709.2024.20240003. |
DING J H, ZHENG Y M, GUI Z H, et al. Simulation and characteristics of combined operation of fixed and variable speed pumped storage units under primary and secondary frequency control[J]. Water Resources and Power, 2024, 42(7): 183-187. DOI: 10.20040/j.cnki.1000-7709.2024.20240003. | |
14 | 王庭政, 汪玉清, 周攀, 等. 大型双馈式可变速抽水蓄能机组协联控制策略研究[J]. 水电能源科学, 2024, 42(12): 143-146, 138. DOI: 10.20040/j.cnki.1000-7709.2024.20240176. |
WANG T Z, WANG Y Q, ZHOU P, et al. Coordinated control strategy research for large-scale doubly-fed variable speed pumped storage units[J]. Water Resources and Power, 2024, 42(12): 143-146, 138. DOI: 10.20040/j.cnki.1000-7709. 2024. 20240176. | |
15 | 宋子奇, 黄磊, 黄平, 等. 抽水蓄能电站输水发电系统方案设计比选研究[J]. 人民长江, 2025, 56(3): 24-29. DOI: 10.16232/j.cnki.1001-4179.2025.03.004. |
SONG Z Q, HUANG L, HUANG P, et al. Comparison and selection of design schemes for water transmission and power generation system of pumped storage power stations[J]. Yangtze River, 2025, 56(3): 24-29. DOI: 10.16232/j.cnki.1001-4179. 2025. 03.004. | |
16 | 邓子昂, 张继勋, 常飞, 等. 基于博弈论组合赋权的抽水蓄能电站选址评价[J]. 水力发电, 2024, 50(8): 22-27. |
DENG Z A, ZHANG J X, CHANG F, et al. Evaluation of pumped-storage power station site selection based on game theory-combinatorial weighting[J]. Water Power, 2024, 50(8): 22-27. | |
17 | 梁睿, 李嘉翔, 巩敦卫, 等. 全清洁能源下的高品质矿区能源系统配置优化方法[J]. 煤炭学报, 2024, 49(3): 1669-1679. DOI: 10.13225/j.cnki.jccs.2023.1511. |
LIANG R, LI J X, GONG D W, et al. Optimal planning method for the high-quality coal mine energy system with complete clean energy supply[J]. Journal of China Coal Society, 2024, 49(3): 1669-1679. DOI: 10.13225/j.cnki.jccs.2023.1511. | |
18 | 王立平, 马实一, 郭旭, 等. 风电-光伏发电-抽水蓄能联合优化调度方法[J]. 水利经济, 2024, 42(6): 58-63. |
WANG L P, MA S Y, GUO X, et al. Wind power-photovoltaic power generation-pumped storage joint optimal scheduling method[J]. Journal of Economics of Water Resources, 2024, 42(6): 58-63. | |
19 | SUN L Y, BAO J, PAN N, et al. Optimal scheduling of wind-photovoltaic-pumped storage joint complementary power generation system based on improved firefly algorithm[J]. IEEE Access, 2024, 12: 70759-70772. |
20 | 丁光旭, 田思源, 方国华, 等. 不同市场环境下贵州省抽水蓄能电站的电价形成机制研究[J]. 水利经济, 2024, 42(2): 73-78. DOI: 10. 3880/j.issn.1003-9511.2024.02.011. |
DING G X, TIAN S Y, FANG G H, et al. Study on electricity price formation mechanism of pumped storage power station under different market environments[J]. Journal of Economics of Water Resources, 2024, 42(2): 73-78. DOI: 10.3880/j.issn.1003-9511. 2024.02.011. | |
21 | 张洪基, 丁涛, 黄雨涵, 等. 电力市场环境下抽水蓄能电站容量电费定价与成本分摊方法[J]. 电力系统自动化, 2024, 48(11): 88-99. |
ZHANG H J, DING T, HUANG Y H, et al. Pricing and cost allocation methods for capacity charges of pumped storage power stations in electricity market environment[J]. Automation of Electric Power Systems, 2024, 48(11): 88-99. | |
22 | 王蕾, 刘伟, 袁小雪, 等. 双碳背景下抽水蓄能电站碳减排量方法学研究[J]. 河北省科学院学报, 2024, 41(3): 64-69. DOI: 10.16191/j.cnki.hbkx.2024.03.002. |
WANG L, LIU W, YUAN X X, et al. Research on methodology for carbon emission reduction of pumped storage power stations under dual carbon background[J]. Journal of the Hebei Academy of Sciences, 2024, 41(3): 64-69. DOI: 10.16191/j.cnki.hbkx. 2024.03.002. | |
23 | YANG Y G, YANG Y, LU Q Y, et al. Comprehensive evaluation of a pumped storage operation effect considering multidimensional benefits of a new power system[J]. Energies, 2024, 17(17): 4449. DOI: 10.3390/en17174449. |
24 | 王焕然, 席光, 李瑞雄, 等. 先进抽水压缩空气复合储能技术[J]. 西安交通大学学报, 2024, 58(5): 1-9. |
WANG H R, XI G, LI R X, et al. A study on the combined pumped-hydro and compressed air energy storage system[J]. Journal of Xi'an Jiaotong University, 2024, 58(5): 1-9. | |
25 | 聂子攀, 肖立业, 邱清泉, 等. 地下抽水蓄能发展综述[J]. 储能科学与技术, 2024, 13(5): 1606-1619. DOI: 10.19799/j.cnki.2095-4239. 2023.0934. |
NIE Z P, XIAO L Y, QIU Q Q, et al. Overview of the development of underground pumped hydro storage[J]. Energy Storage Science and Technology, 2024, 13(5): 1606-1619. DOI: 10.19799/j.cnki.2095-4239.2023.0934. | |
26 | 王晰, 苏开元, 谢小荣. 面向海上风电高效利用的水下抽水蓄能建模与控制[J]. 电网技术, 2024, 48(10): 4167-4174. DOI: 10.13335/j. 1000-3673.pst.2024.0246. |
WANG X, SU K Y, XIE X R. Modeling and control of underwater pumped hydro storage for offshore wind power utilization[J]. Power System Technology, 2024, 48(10): 4167-4174. DOI: 10. 13335/j.1000-3673.pst.2024.0246. | |
27 | 王晰, 苏开元, 谢小荣. 面向海上风电高效利用的水下抽水蓄能容量优化配置分析[J]. 电网技术, 2024, 48(4): 1428-1436. DOI:10. 13335/j.1000-3673.pst.2023.1849. |
28 | 陈伟. 数字孪生智能抽水蓄能电站构建及智能检修应用研究[J]. 水电与新能源, 2024, 38(10): 51-54. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2024.10.013. |
CHEN W. Construction of digital twin intelligent pumped storage power stations and application of intelligent maintenance[J]. Hydropower and New Energy, 2024, 38(10): 51-54. DOI: 10. 13622/j.cnki.cn42-1800/tv.1671-3354.2024.10.013. | |
29 | 郭新杰, 狄洪伟, 李贺宝, 等. 基于ALBERT-BiLSTM-CRF的抽蓄机组故障诊断知识图谱构建方法研究与应用[J]. 电力设备管理, 2024(15): 161-163. |
GUO X J, DI H W, LI H B, et al. Research and application of knowledge graph construction method for fault diagnosis of pumping and storage unit based on ALBERT-BiLSTM-CRF[J]. Electric Power Equipment Management, 2024(15): 161-163. | |
30 | 胡列豪, 巩宇, 张勇军, 等. 考虑声-振模态结合的抽水蓄能机组轴承故障诊断[J]. 电力系统保护与控制, 2024, 52(11): 1-10. DOI: 10. 19783/j.cnki.pspc.231422. |
HU L H, GONG Y, ZHANG Y J, et al. Pumped storage unit bearing fault diagnosis with a combination of sound and vibration dual-modal[J]. Power System Protection and Control, 2024, 52(11): 1-10. DOI: 10.19783/j.cnki.pspc.231422. | |
31 | HUANG L J, GUO H, XIONG B C, et al. A coupled design methodology concerning complex off-design operation for compressed air energy storage systems[J]. Energy, 2024, 293: 130482. DOI: 10.1016/j.energy.2024.130482. |
32 | ALIAGA D M, ROMERO C P, FEICK R, et al. Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery[J]. Applied Energy, 2024, 357: 122506. DOI: 10. 1016/j.apenergy.2023.122506. |
33 | ZHANG Y F, JIN P, WANG H Y, et al. Design, analysis and optimisation of a novel adiabatic-isothermal CAES system with coupled stepped phase change energy storage unit[J]. Applied Thermal Engineering, 2024, 256: 124091. DOI: 10.1016/j.applthermaleng.2024.124091. |
34 | 李梦杰, 刘占斌, 何雅玲, 等. 考虑海上风能波动的水下压缩空气储能系统能量转化特性[J]. 西安交通大学学报, 2025, 59(2): 1-12. DOI: 10.7652/xjtuxb202502001. |
LI M J, LIU Z B, HE Y L, et al. Energy conversion characteristics of underwater compressed air energy storage system considering offshore wind fluctuation[J]. Journal of Xi'an Jiaotong University, 2025, 59(2): 1-12. DOI: 10.7652/xjtuxb202502001. | |
35 | CUI S, CHEN L J, CHEN S Y, et al. Dynamic modeling and analysis of compressed air energy storage for multi-scenario regulation requirements[J]. Journal of Energy Storage, 2024, 100: 113227. DOI: 10.1016/j.est.2024.113227. |
36 | CHEN J X, ZUO Z T, ZHOU X, et al. Study on tip clearance flow of radial intake mixed flow compressor in CAES system[J]. Applied Thermal Engineering, 2025, 263: 125304. DOI: 10.1016/j.applthermaleng.2024.125304. |
37 | POTTIE D L, OLIVEIRA M M, CARDENAS B, et al. Adiabatic Compressed Air Energy Storage system performance with application-oriented designed axial-flow compressor[J]. Energy Conversion and Management, 2024, 304: 118233. DOI: 10.1016/j.enconman.2024.118233. |
38 | ZHANG G J, YANG Y F, CHEN J H, et al. Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system[J]. Applied Energy, 2024, 356: 122361. DOI: 10.1016/j.apenergy.2023.122361. |
39 | 王凯轩, 左志涛, 梁奇, 等. 压缩空气储能系统用多级离心压缩机进口导叶调节策略研究[J]. 风机技术, 2024, 66(2): 24-30. DOI: 10. 16492/j.fjjs.2024.02.0004. |
WANG K X, ZUO Z T, LIANG Q, et al. Adjustment strategy of inlet guide vane of multistage centrifugal compressor applied in CAES[J]. Chinese Journal of Turbomachinery, 2024, 66(2): 24-30. DOI: 10.16492/j.fjjs.2024.02.0004. | |
40 | 杨小亮, 孙健, 董辉, 等. 微小型压缩空气储能系统用涡旋压缩机流动特性研究[J]. 机床与液压, 2024, 52(1): 145-151. |
YANG X L, SUN J, DONG H, et al. Research on flow characteristics of scroll compressor for micro compressed air energy storage system[J]. Machine Tool & Hydraulics, 2024, 52(1): 145-151. | |
41 | 张旭, 李阳海, 王廷举, 等. 大容量压缩空气储能电站压缩机宽工况动态特性研究[J]. 汽轮机技术, 2024, 66(6): 449-455, 460. |
ZHANG X, LI Y H, WANG T J, et al. Off-design dynamic characteristics research of the compressors of large-capacity compressed air energy storage unit[J]. Turbine Technology, 2024, 66(6): 449-455, 460. | |
42 | 韩汶昕, 张雪辉, 许剑, 等. 压气机叶顶间隙流动与控制研究进展[J]. 储能科学与技术, 2024, 13(6): 1940-1962. DOI: 10.19799/j.cnki. 2095-4239.2024.0057. |
HAN W X, ZHANG X H, XU J, et al. Research progress on flow and control of compressor tip clearance[J]. Energy Storage Science and Technology, 2024, 13(6): 1940-1962. DOI: 10.19799/j.cnki.2095-4239.2024.0057. | |
43 | PAN X C, ZHU Y L, WANG X, et al. Numerical investigation on the influence of axial thermal expansion in axial turbine for compressed air energy storage system[J]. Journal of Energy Storage, 2024, 84: 110595. DOI: 10.1016/j.est.2024.110595. |
44 | TAYYEBAN E, DEYMI-DASHTEBAYAZ M, FARZANEH-GORD M. Multi-objective optimization for reciprocating expansion engine used in compressed air energy storage (CAES) systems[J]. Energy, 2024, 288: 129869. DOI: 10.1016/j.energy.2023.129869. |
45 | GUAN Y, LI W, ZHU Y L, et al. Energy loss analysis in two-stage turbine of compressed air energy storage system: Effect of varying partial admission ratio and inlet pressure[J]. Energy, 2024, 305: 132214. DOI: 10.1016/j.energy.2024.132214. |
46 | GUAN Y, WANG X, ZHU Y L, et al. Optimal design and research for nozzle governing turbine of compressed air energy storage system[J]. Journal of Energy Storage, 2024, 77: 109683. DOI: 10.1016/j.est.2023.109683. |
47 | 刘畅, 朱阳历, 张华良, 等. 压缩空气储能系统膨胀机末级叶片特殊边界处理与失效分析[J]. 动力工程学报, 2024, 44(3): 355-360. DOI: 10.19805/j.cnki.jcspe.2024.230539. |
LIU C, ZHU Y L, ZHANG H L, et al. Special boundary treatment and failure analysis of the last-stage blade in the expander of compressed air energy storage system[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 355-360. DOI: 10. 19805/j.cnki.jcspe.2024.230539. | |
48 | GUAN Y, LI W, ZHU Y L, et al. Aerodynamic performance and flow field losses analysis: A study on nozzle governing turbine with varied regulated nozzle stator installation angle[J]. Energy, 2024, 300: 131464. DOI: 10.1016/j.energy.2024.131464. |
49 | 张荣发, 郝宁, 刘传亮, 等. 绝热式压缩空气储能系统中换热器的影响分析[J]. 发电设备, 2025, 39(1): 7-13. DOI: 10.19806/j.cnki.fdsb. 2025.01.002. |
ZHANG R F, HAO N, LIU C L, et al. Analysis on the influence of heat exchangers in adiabatic compressed air energy storage system[J]. Power Equipment, 2025, 39(1): 7-13. DOI: 10.19806/j.cnki.fdsb.2025.01.002. | |
50 | 葛刚强, 王焕然, 李瑞雄, 等. 压缩空气储能蓄热器性能分析和优化设计[J]. 西安交通大学学报, 2023, 57(1): 45-54. |
GE G Q, WANG H R, LI R X, et al. Performance analysis and optimization design of heat accumulator in compressed air energy storage[J]. Journal of Xi'an Jiaotong University, 2023, 57(1): 45-54. | |
51 | 张志平. 面向绝热压缩空气储能的填充床相变储热换热器优化研究[D]. 杭州: 浙江大学, 2024. DOI: 10.27461/d.cnki.gzjdx. 2024. 000039. |
ZHANG Z P. Optimization study on packed-bed phase change thermal energy storage for adiabatic compressed air energy storage[D]. Hangzhou: Zhejiang University, 2024. DOI: 10.27461/d.cnki.gzjdx.2024.000039. | |
52 | ZHU J H, ZHANG Y N, YU B X, et al. Thermodynamic analysis of an advanced adiabatic compressed air energy storage system integrated with a high-temperature thermal energy storage and an Organic Rankine Cycle[J]. Journal of Energy Storage, 2024, 100: 113773. DOI: 10.1016/j.est.2024.113773. |
53 | 丁嘉路. 恒压压缩空气储能系统特性研究[D]. 青岛: 青岛科技大学, 2024. DOI: 10.27264/d.cnki.gqdhc.2024.000027. |
DING J L. Characteristics research of isobaric compressed air energy storage system[D]. Qingdao: Qingdao University of Science & Technology, 2024. DOI: 10.27264/d.cnki.gqdhc. 2024. 000027. | |
54 | 李震领, 许未晴, 贾冠伟. 多管阵列近等温压缩空气储能方法研究[J]. 液压与气动, 2024, 48(1): 93-99. DOI: 10.11832/j.issn.1000-4858.2024.01.011. |
LI Z L, XU W Q, JIA G W. A tube array near isothermal air compressed air energy storage[J]. Chinese Hydraulics & Pneumatics, 2024, 48(1): 93-99. DOI: 10.11832/j.issn.1000-4858. 2024.01.011. | |
55 | YU X L, DOU W B, ZHANG Z P, et al. Performance analysis and optimization of compressed air energy storage integrated with latent thermal energy storage[J]. Energies, 2024, 17(11): 2608. DOI: 10.3390/en17112608. |
56 | SCHMIDT F, MENÉNDEZ J, KONIETZKY H, et al. Technical feasibility of lined mining tunnels in closed coal mines as underground reservoirs of compressed air energy storage systems[J]. Journal of Energy Storage, 2024, 78: 110055. DOI: 10.1016/j.est.2023.110055. |
57 | LIU S H, ZHANG D X. Study on long-term stability of lined rock cavern for compressed air energy storage[J]. Energies, 2024, 17(23): 5908. DOI: 10.3390/en17235908. |
58 | 邓康宇. 废弃煤矿压缩空气储能储气库的多物理场耦合理论及实验研究[D]. 徐州: 中国矿业大学, 2024. DOI: 10.27623/d.cnki.gzkyu. 2024.000038. |
DENG K Y. Theoretical and experimental study on multi-physical field coupling of underground gas storage for compressed air energy storage in abandoned coal mines[D]. Xuzhou: China University of Mining and Technology, 2024. DOI: 10.27623/d.cnki.gzkyu.2024.000038. | |
59 | 蒋中明, 刘宇婷, 陆希, 等. 压气储能内衬硐室储气关键问题与设计要点评述[J]. 岩土力学, 2024, 45(12): 3491-3509. DOI: 10.16285/j.rsm.2024.0523. |
JIANG Z M, LIU Y T, LU X, et al. Review on key scientific and design issues of lined rock Caverns for compressed air energy storage[J]. Rock and Soil Mechanics, 2024, 45(12): 3491-3509. DOI: 10.16285/j.rsm.2024.0523. | |
60 | 张国华, 王薪锦, 柯洪, 等. 压气储能地下内衬储气库运行压力区间确定方法[J]. 岩石力学与工程学报, 2024, 43(12): 2874-2891. DOI: 10.13722/j.cnki.jrme.2024.0308. |
ZHANG G H, WANG X J, KE H, et al. A method to determine the operating pressure range of lined underground gas storage facility in a compressed air energy storage system[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(12): 2874-2891. DOI: 10.13722/j.cnki.jrme.2024.0308. | |
61 | 徐高, 谢芳毅, 曹振瑞, 等. 压缩空气储能盐穴储气库技术及其智能建造工艺技术研究撤回[J/OL]. 热力发电, 2024: 1-13. (2024-03-11). https://link.cnki.net/doi/10.19666/j.rlfd.202311181. |
XU G, XIE F Y, CAO Z R, et al. Research on salt cavern gas storage of compressed air energy storage and its intelligent construction process[J/OL]. Thermal Power Generation, 2024: 1-13. (2024-03-11). https://link.cnki.net/doi/10.19666/j.rlfd. 202311181. | |
62 | LI Q H, LIU W, JIANG L L, et al. Comprehensive safety assessment of two-well-horizontal Caverns with sediment space for compressed air energy storage in low-grade salt rocks[J]. Journal of Energy Storage, 2024, 102: 114037. DOI: 10.1016/j.est.2024.114037. |
63 | GASANZADE F, BAUER S. Approximating coupled power plant and geostorage simulations for compressed air energy storage in porous media[J]. Applied Energy, 2025, 380: 125070. DOI: 10. 1016/j.apenergy.2024.125070. |
64 | WANG Y F, LI S G, ALI BU SINNAH Z, et al. Optimizing energy efficiency and emission reduction: Leveraging the power of machine learning in an integrated compressed air energy storage-solid oxide fuel cell system[J]. Energy, 2024, 313: 133962. DOI: 10.1016/j.energy.2024.133962. |
65 | XUE X J, LI S J, SHI T T, et al. Performance analysis of a compressed air energy storage incorporated with a biomass power generation system[J]. Applied Thermal Engineering, 2024, 248: 123281. DOI: 10.1016/j.applthermaleng.2024.123281. |
66 | SARMAST S, SÉJOURNÉ S, WIGSTON A, et al. Adaptive hybrid energy system for remote Canadian communities: Optimizing wind-diesel systems integrated with adiabatic compressed air energy storage[J]. Energy Conversion and Management, 2024, 315: 118778. DOI: 10.1016/j.enconman.2024.118778. |
67 | CHEN L X, ZHANG L G, WANG Y Z, et al. Design and performance evaluation of a novel system integrating Water-based carbon capture with adiabatic compressed air energy storage[J]. Energy Conversion and Management, 2023, 276: 116583. DOI: 10.1016/j.enconman.2022.116583. |
68 | ALIAGA D M, ROMERO C P, FEICK R, et al. Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH 3 and CO2 cycles for enhanced heat and cold utilisation[J]. Applied Energy, 2024, 362: 123015. DOI: 10.1016/j.apenergy.2024.123015. |
69 | TIAN H F, ZHANG H L, YIN Z, et al. Advancements in compressed air engine technology and power system integration: A comprehensive review[J]. Energy Reviews, 2023, 2(4): 100050. DOI: 10.1016/j.enrev.2023.100050. |
70 | WANG Y X, HU Z Z, ZHU Y, et al. Preparation of a heat storage material from Nano-SiC based composite carbonate with boosted heat storage density for high temperature thermal energy storage[J]. Journal of Energy Storage, 2024, 86: 111290. DOI: 10.1016/j.est.2024.111290. |
71 | PENG X T, ZHANG G, RUI Z L, et al. Numerical simulation and optimization of phase change heat storage units using Slag-Based composite phase change materials[J]. Applied Thermal Engineering, 2024, 243: 122612. DOI: 10.1016/j.applthermaleng. 2024.122612. |
72 | LIU Y L, LI M, EMAM HASSANIEN R H, et al. Fabrication of shape-stable glycine water-based phase-change material using modified expanded graphite for cold energy storage[J]. Energy, 2024, 290: 130306. DOI: 10.1016/j.energy.2024.130306. |
73 | WANG Z, XU X K, YAN T, et al. Preparation and thermal properties of zeolite 13X/MgSO4-LiCl binary-salt composite material for sorption heat storage[J]. Applied Thermal Engineering, 2024, 245: 122905. DOI: 10.1016/j.applthermaleng. 2024.122905. |
74 | LI S Y, HUO Y J, YAN T, et al. Preparation and thermal properties of zeolite/MgSO4 composite sorption material for heat storage[J]. Renewable Energy, 2024, 224: 120166. DOI: 10.1016/j.renene. 2024.120166. |
75 | HUANG X Y, DU Z, LI Y J, et al. Numerical and optimization study on heat storage and release process of novel fin-metal foam composite structures under periodic heat source[J]. International Journal of Heat and Fluid Flow, 2024, 108: 109445. DOI: 10.1016/j.ijheatfluidflow.2024.109445. |
76 | LV L Q, HUANG S Y, ZOU Y, et al. Thermal performance investigation of a medium-temperature pilot-scale latent heat thermal energy storage system: The constant and step temperatures charging and discharging[J]. Renewable Energy, 2024, 225: 120195. DOI: 10.1016/j.renene.2024.120195. |
77 | LV L Q, HUANG S Y, ZHOU H. Performance investigation of biochar/paraffin composite phase change materials in latent heat storage systems: Feasibility of biochar as a thermal conductivity enhancer[J]. Journal of Energy Storage, 2024, 91: 112106. DOI: 10.1016/j.est.2024.112106. |
78 | LIU J T, LU S L. Thermal performance of packed-bed latent heat storage tank integrated with flat-plate collectors under intermittent loads of building heating[J]. Energy, 2024, 299: 131463. DOI: 10. 1016/j.energy.2024.131463. |
79 | HUANG C Q, LIU X, ZHANG Z, et al. Effect of composite fin structure on phase change heat storage tank: A numerical investigation[J]. Thermal Science and Engineering Progress, 2024, 52: 102675. DOI: 10.1016/j.tsep.2024.102675. |
80 | GAO L, CAO S X, HU Y H, et al. Enhancing heat transfer efficiency in solar thermal storage devices with vibration for offshore platforms[J]. Journal of Energy Storage, 2024, 100: 113643. DOI: 10.1016/j.est.2024.113643. |
81 | LIU J W, XIAO Y H, CHEN D D, et al. Melting and solidification characteristics of PCM in oscillated bundled-tube thermal energy storage system[J]. Energies, 2024, 17(8): 1973. DOI: 10.3390/en17081973. |
82 | ZHANG Y Y, GAO X R, SUN C X, et al. Thermal performance and analysis of high-temperature aquifer thermal energy storage based on a practical project[J]. Journal of Energy Storage, 2024, 82: 110399. DOI: 10.1016/j.est.2023.110399. |
83 | 王强, 李斌, 张金宏, 等. "光火储"一体化发电系统的运行策略研究[J]. 太阳能学报, 2024, 45(11): 153-161. DOI: 10.19912/j.0254-0096.tynxb.2023-1240. |
WANG Q, LI B, ZHANG J H, et al. Research on operation strategy of integrated power generation system of "solar-fired-storage"[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 153-161. DOI: 10.19912/j.0254-0096.tynxb.2023-1240. | |
84 | ZHU L K, ZHONG Z W, WANG C Y, et al. Thermo-economic comparison of integrating compressed air energy storage and molten salt thermal energy storage in a combined heat and power plant[J]. Applied Thermal Engineering, 2025, 260: 124931. DOI: 10.1016/j.applthermaleng.2024.124931. |
85 | WANG X, ZHAO P, LI X Z, et al. Impact of synergistic heat storage model on medium and deep geothermal heat transfer systems[J]. Journal of Building Engineering, 2024, 98: 111371. DOI: 10.1016/j.jobe.2024.111371. |
86 | HE Y J, TAN Y F, BU X B. Solar thermal energy and CO2 storage in saline aquifers for renewable energy space heating[J]. Journal of Energy Storage, 2024, 98: 113207. DOI: 10.1016/j.est. 2024. 113207. |
87 | GENG H Z, WU Y, MA D D, et al. Experimental study on the heat storage characteristics of rock bed heat storage system with different packing structure[J]. Journal of Energy Storage, 2024, 101: 113973. DOI: 10.1016/j.est.2024.113973. |
88 | 周喜超, 李晓霞, 李振, 等. 基于太阳能储/供热综合能源系统的运行策略[J]. 可再生能源, 2024, 42(1): 71-78. DOI: 10.13941/j.cnki.21-1469/tk.2024.01.006. |
ZHOU X C, LI X X, LI Z, et al. Research on the influence of heat storage operation strategies on the performance of integrat-ed energy system based on the solar energy storage and heating[J]. Renewable Energy Resources, 2024, 42(1): 71-78. DOI: 10. 13941/j.cnki.21-1469/tk.2024.01.006. | |
89 | DENG R Z, WANG Z Y, ZHU J, et al. Experiment study on heat storage and heat dissipation coupling characteristics of active phase change radiators[J]. Journal of Energy Storage, 2024, 80: 110251. DOI: 10.1016/j.est.2023.110251. |
90 | YU J Q, LIU X J, RAO Z H. Biomimetic phase change capsules with conch shell structures for improving thermal energy storage efficiency[J]. Journal of Energy Storage, 2024, 90: 111725. DOI: 10.1016/j.est.2024.111725. |
91 | YANG T, WORLITSCHEK J, FIORENTINI M. Techno-economic optimization and feasibility of PCM-based seasonal thermal energy storage systems for district heating and cooling[J]. Energy and Buildings, 2024, 324: 114925. DOI: 10.1016/j.enbuild. 2024. 114925. |
92 | ZHAO Y, HUANG J X, SONG J, et al. Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores[J]. Energy, 2024, 296: 131148. DOI: 10.1016/j.energy.2024.131148. |
93 | CHI B W, LI B Y, ZUO H Y, et al. Development of continuous latent and sensible heat storage device with multi-energy composition for enhancing energy density[J]. Applied Thermal Engineering, 2025, 262: 125190. DOI: 10.1016/j.applthermaleng. 2024.125190. |
94 | LIU Z C, QUAN Z H, ZHAO Y H, et al. Optimization of a cold thermal energy storage system with micro heat pipe arrays by statistical approach: Taguchi method and response surface method[J]. Renewable Energy, 2025, 238: 121899. DOI: 10.1016/j.renene.2024.121899. |
95 | 张文宇, 赵长颖. 基于相变技术的便携式储冷箱性能研究[J]. 制冷学报, 2024, 45(1): 145-157. |
ZHANG W Y, ZHAO C Y. Examining the performance of portable cold-storage box based on phase-change technology[J]. Journal of Refrigeration, 2024, 45(1): 145-157. | |
96 | FAN M Q, LIU C P, TONG L G, et al. A cold thermal energy storage based on ASU-LAES system: Energy, exergy, and economic analysis[J]. Energy, 2025, 314: 134132. DOI: 10.1016/j.energy.2024.134132. |
97 | 兰文超, 刘曦, 叶楷, 等. 基于LNG冷能的冷冻淡化与蓄冷系统[J]. 工程热物理学报, 2024, 45(11): 3239-3242. |
LAN W C, LIU X, YE K, et al. Freezing desalination with thermal energy storage system based on LNG cold energy[J]. Journal of Engineering Thermophysics, 2024, 45(11): 3239-3242. | |
98 | 胡东旭, 朱少飞, 魏晓钢, 等. MW级大储能量飞轮轴系结构力学及动力学研究[J]. 储能科学与技术, 2024, 13(5): 1542-1550. DOI: 10. 19799/j.cnki.2095-4239.2023.0925. |
HU D X, ZHU S F, WEI X G, et al. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting[J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. DOI: 10.19799/j.cnki.2095-4239.2023.0925. | |
99 | 马昕阳, 李文艳. 不同材料飞轮转子的储能特性对比及有限元分析[J]. 机械设计, 2024, 41(7): 21-27. DOI: 10.13841/j.cnki.jxsj. 2024. 07.002. |
MA X Y, LI W Y. Comparison and finite-element analysis of energy-storage characteristics of flywheel rotors with different materials[J]. Journal of Machine Design, 2024, 41(7): 21-27. DOI: 10.13841/j.cnki.jxsj.2024.07.002. | |
100 | HU D X, DAI X J, XIE B, et al. Fatigue life of flywheel energy storage rotors composed of 30Cr2Ni4MoV steel[J]. Energies, 2024, 17(15): 3730. DOI: 10.3390/en17153730. |
101 | 王耕籍. 百千瓦级UPS飞轮储能用永磁同步电机设计关键技术研究[D]. 天津: 天津大学, 2024. DOI: 10.27356/d.cnki.gtjdu. 2024. 000001. |
WANG G J. Research on key technology of permanent magnet synchronous motor design for 100 kW UPS flywheel energy storage[D]. Tianjin: Tianjin University, 2024. DOI: 10.27356/d.cnki.gtjdu.2024.000001. | |
102 | 周茜茜, 黄勇, 崔可, 等. 飞轮储能装置电机温度场仿真技术研究及试验验证[J]. 储能科学与技术, 2024, 13(8): 2589-2596. DOI: 10. 19799/j.cnki.2095-4239.2024.0231. |
ZHOU Q Q, HUANG Y, CUI K, et al. Research and test verification on simulation technology of motor temperature field of flywheel energy storage device[J]. Energy Storage Science and Technology, 2024, 13(8): 2589-2596. DOI: 10.19799/j.cnki.2095-4239. 2024.0231. | |
103 | 王成, 白国长, 张宇. 飞轮储能用永磁同步电机温度场分析[J]. 重庆理工大学学报(自然科学), 2024, 38(2): 148-153. |
WANG C, BAI G C, ZHANG Y. Temperature field analysis of permanent magnet synchronous motor for flywheel energy storage[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(2): 148-153. | |
104 | 李佳玉. 基于多智能体协同的飞轮储能系统先进控制研究[D]. 北京:华北电力大学, 2024. DOI: 10.27140/d.cnki.ghbbu. 2024. 000086. |
LI J Y. Research on advanced control of flywheel energy storage system based on multi-agent collaboration[D]. Beijing: North China Electric Power University, 2024. DOI: 10.27140/d.cnki.ghbbu.2024.000086. | |
105 | 吕宪超. 基于滑模控制的飞轮储能直接功率母线电压控制策略研究[J]. 电工技术, 2024(7): 1-4. DOI: 10.19768/j.cnki.dgjs. 2024. 07.001. |
LV X C. Sliding mode control-based strategy for direct bus voltage control in flywheel energy storage[J]. Electric Engineering, 2024(7): 1-4. DOI: 10.19768/j.cnki.dgjs. 2024. 07.001. | |
106 | MENG K, WU H J, FAN D, et al. Research on the strategy for average consensus control of flywheel energy storage array system based on lifecycle[J]. Journal of Energy Storage, 2024, 99: 113409. DOI: 10.1016/j.est.2024.113409. |
107 | 严晓生, 刘仲稳, 赵建红, 等. 混合储能辅助火电机组一次调频及其容量配置[J]. 太阳能学报, 2024, 45(11): 647-654. DOI: 10. 19912/j.0254-0096.tynxb.2023-1151. |
YAN X S, LIU Z W, ZHAO J H, et al. Primary frequency regulation and capacity configuration of hybrid energy storage auxiliary thermal power unit[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 647-654. DOI: 10.19912/j.0254-0096.tynxb.2023-1151. | |
108 | 佀想, 段建东, 王露霄, 等. 混合储能系统快速功率响应模型预测控制[J]. 电机与控制学报, 2024, 28(9): 22-35. DOI: 10.15938/j.emc.2024.09.003. |
SI X, DUAN J D, WANG L X, et al. Fast-power-response model predictive control for hybrid energy storage systems[J]. Electric Machines and Control, 2024, 28(9): 22-35. DOI: 10.15938/j.emc.2024.09.003. | |
109 | 乔天舒, 梁双印, 郭鹏, 等. 飞轮储能辅助抽水蓄能机组一次调频仿真研究[J]. 太阳能学报, 2024, 45(11): 619-626. DOI: 10.19912/j.0254-0096.tynxb.2023-1071. |
QIAO T S, LIANG S Y, GUO P, et al. Simulation study on primary frequency regulation of pumped storage unit assisted by flywheel energy storage[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 619-626. DOI: 10.19912/j.0254-0096.tynxb.2023-1071. | |
110 | HOU E G, XU Y L, TANG J R, et al. Strategy of flywheel–battery hybrid energy storage based on optimized variational mode decomposition for wind power suppression[J]. Electronics, 2024, 13(7): 1362. DOI: 10.3390/electronics13071362. |
111 | 王云辉, 张建伟, 田桂珍, 等. 基于矩阵变换器的飞轮储能模型预测控制策略[J]. 电气工程学报, 2024, 19(2): 26-33. |
WANG Y H, ZHANG J W, TIAN G Z, et al. Model predictive control strategy of flywheel energy storage system based on matrix converter[J]. Journal of Electrical Engineering, 2024, 19(2): 26-33. | |
112 | 林大方, 王四季, 王程阳, 等. 复杂工况下储能飞轮转子传力支承与减振设计[J]. 太阳能学报, 2024, 45(4): 356-364. DOI: 10. 19912/j.0254-0096.tynxb.2022-1957. |
LIN D F, WANG S J, WANG C Y, et al. Design of energy storage flywheel rotor supporting structure and vibration damping under complex operating conditions[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 356-364. DOI: 10.19912/j.0254-0096.tynxb.2022-1957. | |
113 | 张益中, 余双敏, 傅斌. 兆瓦级飞轮储能定子绕组端部电晕放电影响因素研究[J]. 大电机技术, 2024(6): 59-64, 70. |
ZHANG Y Z, YU S M, FU B. Research on the influence factors of corona discharge at the end of the stator winding of MW level flywheel energy storage[J]. Large Electric Machine and Hydraulic Turbine, 2024(6): 59-64, 70. | |
114 | 鲍炳炎, 王军, 余中军, 等. 真空飞轮转子强化辐射换热实验研究[J]. 热能动力工程, 2024, 39(12): 113-118. DOI: 10.16146/j.cnki.rndlgc.2024.12.013. |
BAO B Y, WANG J, YU Z J, et al. Experimental study on enhanced radiation heat transfer of vacuum flywheel rotor[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(12): 113-118. DOI: 10.16146/j.cnki.rndlgc.2024.12.013. | |
115 | 徐帆, 戴兴建, 王又珑, 等. 飞轮储能用永磁电机研究进展[J]. 储能科学与技术, 2024, 13(10): 3423-3441. DOI: 10.19799/j.cnki. 2095-4239.2024.0320. |
XU F, DAI X J, WANG Y L, et al. Research progress on permanent magnet machines for flywheel energy storage[J]. Energy Storage Science and Technology, 2024, 13(10): 3423-3441. DOI: 10.19799/j.cnki.2095-4239.2024.0320. | |
116 | HUANG D M, JIAO C Q, FANG J. Design and research of a high-temperature superconducting flywheel energy storage system with zero-flux coils[J]. IEEE Transactions on Applied Superconductivity, 2024, 34(9): 5702406. DOI: 10.1109/TASC. 2024.3460760. |
117 | JIANG X J, ZHANG L, LI F W, et al. Design and analysis of a highly reliable permanent magnet synchronous machine for flywheel energy storage[J]. Machines, 2024, 12(9): 655. DOI: 10.3390/machines12090655. |
118 | ZHANG M, XIE F Z, MA Y J, et al. Performance enhancement of lead-carbon batteries by bi-based metal-organic framework-derived carbon materials[J]. Journal of Energy Storage, 2024, 100: 113746. DOI: 10.1016/j.est.2024.113746. |
119 | XIE F Z, MA Y J, ZHANG M, et al. Effect of sucrose-based carbon foams as negative electrode additive on the performance of lead-acid batteries under high-rate partial-state-of-charge condition[J]. Heliyon, 2024, 10(10): e31339. DOI: 10. 1016/j.heliyon.2024.e31339. |
120 | HUANG J, HE P Q, HE Y P, et al. Low-grade lignite derived nitrogen doped hierarchical porous carbon for advanced lead-carbon batteries[J]. Journal of Energy Storage, 2024, 100: 113675. DOI: 10.1016/j.est.2024.113675. |
121 | HE P Q, HE Y P, YANG Y, et al. In-situ carbon encapsulated Pb/PbO nanoparticles derived from spent lead paste for lead-carbon battery[J]. Journal of Power Sources, 2024, 614: 234989. DOI: 10.1016/j.jpowsour.2024.234989. |
122 | HE P Q, HUANG H, HUANG J, et al. Pb-MOF derived lead-carbon composites for superior lead-carbon battery[J]. Journal of Energy Storage, 2024, 101: 113820. DOI: 10.1016/j.est. 2024.113820. |
123 | HE P Q, YANG Y, HUANG H, et al. Cooperative composites anchored with single atom Pb and carbon confined PbO nanoparticles for superior lead-carbon batteries[J]. Journal of Energy Chemistry, 2024, 97: 486-497. DOI: 10.1016/j.jechem. 2024.05.054. |
124 | SUN X F, YANG L R, XIONG Y Q. Pb/(Ni@RC) composite derived from rice for lead carbon batteries: Excellent conductivity, mass transfer, and reactivity[J]. Journal of Power Sources, 2024, 614: 235023. DOI: 10.1016/j.jpowsour. 2024. 235023. |
125 | LIU Z Q, LIN N, WU Y P, et al. Rice husk-based activated carbon/carbon nanotubes composites for synergistically enhancing the performance of lead-carbon batteries[J]. Carbon, 2025, 231: 119714. DOI: 10.1016/j.carbon. 2024. 119714. |
126 | WANG Y, LIN N, LIU D B, et al. Tin dioxide coated rice husk silica as lead-acid battery positive additive for enhancing the performance under power-intensive applications[J]. Journal of Power Sources, 2024, 602: 234345. DOI: 10.1016/j.jpowsour. 2024.234345. |
127 | LI Z M, HUANG S M, TAO D W, et al. Reduced graphene oxide coated with amorphous lead as positive additive for enhanced performance of lead-carbon batteries[J]. Electrochemistry Communications, 2023, 157: 107622. DOI: 10.1016/j.elecom. 2023.107622. |
128 | WANG H B, OUYANG L N, HUANG J, et al. Hydrophilic polyaniline/graphene oxide composite promoting electron and ion transfer in positive electrode of lead-carbon battery[J]. Journal of Power Sources, 2025, 631: 236248. DOI: 10.1016/j.jpowsour.2025.236248. |
129 | ZHANG X L, CHEN W, YANG L R, et al. PEDOT-coated rice husk-based activated carbon: Boosting lead-acid battery performance[J]. Journal of Energy Storage, 2024, 90: 111771. DOI: 10.1016/j.est.2024.111771. |
130 | MA X Y, ZHOU S Q, ZHOU S, et al. Investigation of discharged positive material used as negative additive for lead-acid battery[J]. Journal of Energy Storage, 2024, 99: 113431. DOI: 10.1016/j.est.2024.113431. |
131 | ZHAO Y, HUO X G, YANG L R, et al. Multifunctional perfluorooctanoic acid as electrolyte additive enables high-performance lead-carbon battery[J]. Ionics, 2025, 31(3): 2523-2537. DOI: 10.1007/s11581-025-06084-9. |
132 | LIU D B, WU Y P, LIN N, et al. High gravimetric energy density lead acid battery with titanium-based negative grids employing expanded mesh sandwich structure[J]. Journal of Energy Storage, 2024, 101: 113877. DOI: 10.1016/j.est.2024.113877. |
133 | PANG F Z, WU Y X, LIU X W, et al. Microstructures and corrosion resistance of PbCaSnAl-M (M=Mg, Sr, Ba) grid alloys[J]. Journal of Energy Storage, 2024, 85: 110909. DOI: 10.1016/j.est.2024.110909. |
134 | YANG K, PANG Z Y, SONG Z X, et al. Investigation of lead-acid battery water loss by in situ electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2024, 484: 144099. DOI: 10.1016/j.electacta.2024.144099. |
135 | PANG Z Y, YANG K, SONG Z X, et al. Effects of floating charge ageing on electrochemical impedance spectroscopy of lead-acid batteries[J]. Journal of Energy Storage, 2024, 87: 111322. DOI: 10.1016/j.est.2024.111322. |
136 | SHEN Y D, GE Y R. Prediction of state of charge for lead-acid battery based on LSTM-attention and LightGBM[J]. Journal of Computing and Information Science in Engineering, 2024, 24(9): 090903. DOI: 10.1115/1.4064666. |
137 | CAO X J, YAN X Y, ZHAO K, et al. Simple electrode assembly engineering: Toward a multifunctional lead-acid battery[J]. Journal of Energy Chemistry, 2024, 96: 536-543. DOI: 10.1016/j.jechem.2024.05.017. |
138 | 董艳涛, 李立飞, 张瑞敏, 等. 一种铅酸蓄电池电解液及其制备方法、以及铅酸蓄电池: CN117393867A[P]. 2024-01-12. |
DONG Y T, LI L F, ZHANG R M, et al. Lead-acid storage battery electrolyte, preparation method thereof and lead-acid storage battery: CN117393867A[P]. 2024-01-12. | |
139 | 戴德兵, 乔卫建, 王志明, 等. 一种铅酸电池高分子胶体电解质及其制备方法: CN117335017A[P]. 2024-01-02. |
140 | 秦争光, 苑景春, 陈绍林, 等. 一种抑制铅炭电池循环失水的电解液: CN119170889A[P]. 2024-12-20. |
141 | 李志兵, 崔辉, 程先清, 等. 一种电解液、制备方法以及在动力用耐低温铅酸蓄电池: CN118136974A[P]. 2024-06-04. |
LI Z B, CUI H, CHENG X Q, et al. Electrolyte, preparation method and low-temperature-resistant lead-acid storage battery for power: CN118136974A[P]. 2024-06-04. | |
142 | 张杰, 吴涛, 陈龙霞, 等. 铅酸蓄电池正极板制造方法: CN117577793B[P]. 2024-05-14. |
ZHANG J, WU T, CHEN L X, et al. Manufacturing method of positive plate of lead-acid storage battery: CN117577793B[P]. 2024-05-14. | |
143 | 柯志民, 郭锡民, 赖士首, 等. 一种高容量长寿命铅碳电池负极及其制作方法: CN117712296A[P]. 2024-03-15. |
KE Z M, GUO X M, LAI S S, et al. High-capacity long-life lead-carbon battery negative electrode and manufacturing method thereof: CN117712296A[P]. 2024-03-15. | |
144 | 林海波, 李杰才, 林楠. 一种铅炭电池碳基负极添加剂的可控制备方法: CN119008947A[P]. 2024-11-22. |
LIN H B, LI J C, LIN N. Controllable preparation method of carbon-based negative electrode additive of lead-carbon battery: CN119008947A[P]. 2024-11-22. | |
145 | 李先锋, 张代双, 阎景旺, 等. 一种介孔氟掺杂碳材料的制备方法和应用: CN118183683A[P]. 2024-06-14. |
LI X F, ZHANG D S, YAN J W, et al. Preparation method and application of mesoporous fluorine-doped carbon material: CN118183683A[P]. 2024-06-14. | |
146 | WANG Q D, YAO Z P, WANG J L, et al. Chemical short-range disorder in lithium oxide cathodes[J]. Nature, 2024, 629(8011): 341-347. DOI: 10.1038/s41586-024-07362-8. |
147 | LIU M L, YING Y R, LIU J W, et al. Catalytic strategies enabled rapid formation of homogeneous and mechanically robust inorganic-rich cathode electrolyte interface for high-rate and high-stability lithium-ion batteries[J]. Advanced Energy Materials, 2024, 14(48): 2403696. DOI: 10.1002/aenm. 202403696. |
148 | TIAN M Y, YAN Y, YU H L, et al. Designer lithium reservoirs for ultralong life lithium batteries for grid storage[J]. Advanced Materials, 2024, 36(25): 2400707. DOI: 10.1002/adma. 202400707. |
149 | ZHANG Y, TANG W, GAO H P, et al. Monolithic layered silicon composed of a crystalline-amorphous network for sustainable lithium-ion battery anodes[J]. ACS Nano, 2024, 18(24): 15671-15680. DOI: 10.1021/acsnano.4c01814. |
150 | SHI Z Q, WANG Y M, YUE X Y, et al. Mechanically interlocked interphase with energy dissipation and fast Li-ion transport for high-capacity lithium metal batteries[J]. Advanced Materials, 2024, 36(23): 2401711. DOI: 10.1002/adma.202401711. |
151 | XU Q S, LI T, JU Z J, et al. Li2ZrF6-based electrolytes for durable lithium metal batteries[J]. Nature, 2025, 637(8045): 339-346. DOI: 10.1038/s41586-024-08294-z. |
152 | YANG H Y, ZHAO Y J, QIN T, et al. Chemically active sulfonate additive with transition metal and oxygen dual-site deactivation for high-voltage LiCoO2[J]. ACS Energy Letters, 2024, 9(9): 4475-4484. DOI: 10.1021/acsenergylett.4c01898. |
153 | YI X P, YANG Y, XIAO K S, et al. Achieving balanced performance and safety for manufacturing all-solid-state lithium metal batteries by polymer base adjustment[J]. Advanced Energy Materials, 2025, 15(10): 2404973. DOI: 10.1002/aenm. 202404973. |
154 | YI X P, YANG Y, SONG J J, et al. Strategically tailored polyethylene separator parameters enable cost-effective, facile, and scalable development of ultra-stable liquid and all-solid-state lithium batteries[J]. Energy Storage Materials, 2025, 77: 104191. DOI: 10.1016/j.ensm.2025.104191. |
155 | YANG M, WU Y J, YANG K Q, et al. High-areal-capacity and long-cycle-life all-solid-state lithium-metal battery by mixed-conduction interface layer[J]. Advanced Energy Materials, 2024, 14(15): 2303229. DOI: 10.1002/aenm.202303229. |
156 | WEI J, SUN J J, ZHANG P B, et al. Energy density boosted vanadium colloid flow batteries realized by a reversible nanoparticle suspension-dissolution strategy[J]. Advanced Functional Materials, 2024, 34(21): 2314956. DOI: 10.1002/adfm.202314956. |
157 | XIE C X, WANG C, XU Y, et al. Reversible multielectron transfer I-/IO3-cathode enabled by a hetero-halogen electrolyte for high-energy-density aqueous batteries[J]. Nature Energy, 2024, 9(6): 714-724. DOI: 10.1038/s41560-024-01515-9. |
158 | ZHAO Z M, LI T Y, ZHANG C K, et al. Air-stable naphthalene derivative-based electrolytes for sustainable aqueous flow batteries[J]. Nature Sustainability, 2024, 7(10): 1273-1282. DOI: 10.1038/s41893-024-01415-6. |
159 | XING F, FU Q, XING F, et al. Bismuth single atoms regulated graphite felt electrode boosting high power density vanadium flow batteries[J]. Journal of the American Chemical Society, 2024, 146(38): 26024-26033. DOI: 10.1021/jacs.4c04951. |
160 | NIE Y Z, NIE R, LIN H, et al. In-situ constructed core-shell catalyst enabling subzero capacity unlocking of cost-effective and long-life vanadium flow batteries[J]. Angewandte Chemie International Edition, 2025, 64(9): e202420794. DOI: 10.1002/anie.202420794. |
161 | ZHEN Y H, XU Z A, CAO Q B, et al. Self-standing covalent organic polymer membrane with high stability and enhanced ion-sieving effect for flow battery[J]. Angewandte Chemie (International Ed), 2025, 64(1): e202413046. DOI: 10.1002/anie.202413046. |
162 | ZHANG H Q, XU W, SONG W J, et al. High-performance spiro-branched polymeric membranes for sustainability applications[J]. Nature Sustainability, 2024, 7(7): 910-919. DOI: 10.1038/s41893-024-01364-0. |
163 | WEI D B, PAN L M, SUN J, et al. A novel high-performance all-liquid formic acid redox fuel cell: Simultaneously generating electricity and restoring the capacity of flow batteries[J]. Energy & Environmental Science, 2024, 17(22): 8545-8556. DOI: 10.1039/D4EE02450H. |
164 | YANG Y, WANG Z F, DU C C, et al. Decoupling the air sensitivity of Na-layered oxides[J]. Science, 2024, 385(6710): 744-752. DOI: 10.1126/science.adm9223. |
165 | WANG Q D, ZHOU D, ZHAO C L, et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries[J]. Nature Sustainability, 2024, 7(3): 338-347. DOI: 10.1038/s41893-024-01266-1. |
166 | LIU J, HUANG W Y, LIU R B, et al. Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries[J]. Advanced Functional Materials, 2024, 34(24): 2315437. DOI: 10.1002/adfm. 202315437. |
167 | LIN X T, ZHANG S M, YANG M H, et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries[J]. Nature Materials, 2024, 24(1): 83-91. DOI: 10. 1038/s41563-024-02011-x. |
168 | XU C L, ZHOU L, GAO T, et al. Development of high-performance iron-based phosphate cathodes toward practical Na-ion batteries[J]. Journal of the American Chemical Society, 2024, 146(14): 9819-9827. DOI: 10.1021/jacs.3c14452. |
169 | LI M, SUN C, YUAN X Y, et al. A configuration entropy enabled high-performance polyanionic cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2024, 34(21): 2314019. DOI: 10.1002/adfm.202314019. |
170 | WANG Y C, JIANG N, YANG C, et al. High-entropy Prussian blue analogs with 3D confinement effect for long-life sodium-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(9): 5170-5180. DOI: 10.1039/D3TA07671G. |
171 | TANG X H, XIE F, LU Y X, et al. Kinetics manipulation for improved solid electrolyte interphase and reversible Na storage[J]. ACS Energy Letters, 2024, 9(3): 1158-1167. DOI: 10.1021/acsenergylett.4c00041. |
172 | QIU D P, ZHAO W T, ZHANG B, et al. Ni-single atoms modification enabled kinetics enhanced and ultra-stable hard carbon anode for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 14(20): 2400002. DOI: 10.1002/aenm. 202400002. |
173 | ZHAO X B, SHI P, WANG H B, et al. Unlocking plateau capacity with versatile precursor crosslinking for carbon anodes in Na-ion batteries[J]. Energy Storage Materials, 2024, 70: 103543. DOI: 10.1016/j.ensm.2024.103543. |
174 | DEYSHER G, OH J A S, CHEN Y T, et al. Design principles for enabling an anode-free sodium all-solid-state battery[J]. Nature Energy, 2024, 9(9): 1161-1172. DOI: 10.1038/s41560-024-01569-9. |
175 | LIN X T, ZHAO Y, WANG C H, et al. A dual anion chemistry-based superionic glass enabling long-cycling all-solid-state sodium-ion batteries[J]. Angewandte Chemie International Edition, 2024, 63(2): e202314181. DOI: 10.1002/anie. 202314181. |
176 | LIU Y, ZHU Z Y, WU J S, et al. Tuning crystal structure and electronic properties for enhanced oxygen intercalation pseudocapacitance in perovskite[J]. Cell Reports Physical Science, 2024, 5(3): 101846. DOI: 10.1016/j.xcrp.2024.101846. |
177 | ZHAO W G, DENG J P, LI M H, et al. Rational synthesis of sea urchin-like NiCo-LDH/tannin carbon microsphere composites using microwave hydrothermal technique for high-performance asymmetric supercapacitor[J]. Advanced Composites and Hybrid Materials, 2025, 8(2): 215. DOI: 10.1007/s42114-025-01220-5. |
178 | CHEN R X, CAI X Y, HE X Y, et al. Revealing the mechanism of Faradaic PN junction design strategy in enhancing electrochemical performance of supercapacitor[J]. Chemical Engineering Journal, 2024, 488: 150981. DOI: 10.1016/j.cej. 2024.150981. |
179 | WANG S, ZHENG S H, SHI X Y, et al. Monolithically integrated micro-supercapacitors with high areal number density produced by surface adhesive-directed electrolyte assembly[J]. Nature Communications, 2024, 15: 2850. DOI: 10.1038/s41467-024-47216-5. |
180 | ZHU Z Y, XIA Q X, WANG L B, et al. In situ grown VO2/V2C MXene and its supercapacitor applications[J]. Journal of Energy Storage, 2024, 88: 111484. DOI: 10.1016/j.est. 2024. 111484. |
181 | WU S L, YANG Y B, SUN M Z, et al. Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan[J]. Nano-Micro Letters, 2024, 16(1): 161. DOI: 10.1007/s40820-024-01372-x. |
182 | DU H S, YANG Y, ZHANG C, et al. Hierarchical porous carbon originated from the directing associated with activation as high-performance electrodes for supercapacitor and Li ion capacitor[J]. Journal of Power Sources, 2024, 614: 234988. DOI: 10. 1016/j.jpowsour.2024.234988. |
183 | WANG L F, WANG H Y, WU C X, et al. Moisture-enabled self-charging and voltage stabilizing supercapacitor[J]. Nature Communications, 2024, 15: 4929. DOI: 10.1038/s41467-024-49393-9. |
184 | LIU P X, SONG Z Y, MIAO L, et al. Boosting spatial charge storage in ion-compatible pores of carbon superstructures for advanced zinc-ion capacitors[J]. Small, 2024, 20(32): 2400774. DOI: 10.1002/smll.202400774. |
185 | FENG W L, MENG C C, GUO X L, et al. Defect-driven reconstruction of Na-ion diffusion channels enabling high-performance Co-doped TiO2 anodes for Na-ion hybrid capacitors[J]. Advanced Energy Materials, 2024, 14(23): 2400558. DOI: 10.1002/aenm.202400558. |
186 | LIU Q, WU D L, WANG T, et al. Pre-oxidating and pre-carbonizing to regulate the composition and structure of coal tar pitch: The fabrication of porous carbon for supercapacitor applications[J]. Advanced Functional Materials, 2024, 34(29): 2400556. DOI: 10.1002/adfm.202400556. |
187 | WEI J H, HU F, PAN Y F, et al. Design strategy for metal–organic framework assembled on modifications of MXene layers for advanced supercapacitor electrodes[J]. Chemical Engineering Journal, 2024, 481: 148793. DOI: 10.1016/j.cej. 2024.148793. |
188 | ZHENG R, LIN H C, DING J R, et al. A self-supporting multi-component collaborative structure for enhancing interface electron transfer in hybrid supercapacitor[J]. Journal of Energy Storage, 2024, 75: 109565. DOI: 10.1016/j.est.2023.109565. |
189 | ZHANG C H, QING X, WU Y, et al. Rational design of layered double hydroxides with yolk-shell heterostructures for novel supercapacitor electrodes[J]. Electrochimica Acta, 2025, 524: 146026. DOI: 10.1016/j.electacta.2025.146026. |
190 | HUANG J T, ZHU S, ZHANG J J, et al. One-pot ultrafast molten-salt synthesis of anthracite-based porous carbon for high-performance capacitive energy storage[J]. ACS Materials Letters, 2024, 6(6): 2144-2152. DOI: 10.1021/acsmaterialslett.4c00275. |
191 | HUANG H C, WU H Q, ZHANG X, et al. Enhanced ion transport in ultrathin regenerated cellulose supercapacitor separators[J]. Journal of Materials Chemistry C, 2024, 12(25): 9189-9199. DOI: 10.1039/D4TC01629G. |
192 | ZHANG X M, ZHENG X, HU X Z, et al. Three-dimensional carbon nanomaterial/aluminum oxide/aluminum composite current collectors for flexible supercapacitors[J]. ACS Applied Energy Materials, 2024, 7(9): 3700-3708. DOI: 10.1021/acsaem.4c00056. |
193 | ZHOU Y, LI B X, ZHOU H, et al. Strategic alloy design for liquid metal batteries achieving high performance and economic stability[J]. Journal of Energy Storage, 2024, 100: 113672. DOI: 10.1016/j.est.2024.113672. |
194 | YANG Y Z, LI Z H, XIE H L, et al. A novel high voltage SeSb positive electrode material for high-energy-density liquid metal battery[J]. Journal of Energy Storage, 2025, 115: 116032. DOI: 10.1016/j.est.2025.116032. |
195 | YI C, ZHOU Y, ZHANG W L, et al. Achieving superior electrode kinetics in bismuth-based liquid metal batteries via tin additive[J]. Journal of Power Sources, 2025, 640: 236724. DOI: 10. 1016/j.jpowsour.2025.236724. |
196 | FENG S M, FAN L, ZHOU H, et al. A Na-Li dual cation liquid metal battery with high electrode utilization and high cycling stability[J]. Energy Storage Materials, 2024, 73: 103803. DOI: 10.1016/j.ensm.2024.103803. |
197 | YAN S, ZHOU X B, FAN L, et al. Tellurium–antimony electrodes with multistep discharge mechanisms for high-energy-density liquid metal batteries[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(31): 11831-11838. DOI: 10. 1021/acssuschemeng.4c04926. |
198 | XIE H L, FENG J Y, ZHAO H L. Ternary intermediate phase mediated high energy density and kinetically accelerated Sb-Cd electrode for liquid metal batteries[J]. Energy Storage Materials, 2024, 72: 103738. DOI: 10.1016/j.ensm. 2024. 103738. |
199 | ZHANG W X, YAN S, LI H M, et al. A novel array current collector design enabling high energy efficiency liquid metal batteries[J]. Chemical Engineering Journal, 2024, 487: 150277. DOI: 10.1016/j.cej.2024.150277. |
200 | RANAWADE V, TIWARI N, NALWA K S. External magnetic field and heating reduce the mass transport overpotential in a liquid metal battery[J]. Journal of Energy Storage, 2025, 114: 115890. DOI: 10.1016/j.est.2025.115890. |
201 | ZHOU X B, FAN L, YAN S, et al. Enhancing capacity utilization of Li|LiCl-KCl-CsCl|Bi (300 ℃) liquid metal batteries through the application of external magnetic fields[J]. Journal of Power Sources, 2024, 624: 235516. DOI: 10.1016/j.jpowsour. 2024. 235516. |
202 | ZHANG E, XU C, FAN L, et al. Study on the tolerance of cell inconsistencies in high-capacity liquid metal battery parallel modules[J]. Journal of Energy Storage, 2024, 101: 113856. DOI: 10.1016/j.est.2024.113856. |
203 | FAN L, ZHANG E, YANG T Q, et al. A balancing system for liquid metal batteries using the Floyd-Warshall algorithm[J]. International Journal of Electrochemical Science, 2025, 20(1): 100915. DOI: 10.1016/j.ijoes.2024.100915. |
204 | ZHANG Y, FAN L, LI H M, et al. Investigation on electro-thermal behavior of liquid metal batteries under various abusive conditions[J]. Applied Energy, 2025, 377: 124715. DOI: 10.1016/j.apenergy.2024.124715. |
205 | 魏晓东, 黄青丹, 饶锐, 等. 液态金属电池串联复合均衡模式的研究[J]. 电力电容器与无功补偿, 2024, 45(3): 130-136. DOI: 10. 14044/j.1674-1757.pcrpc.2024.03.017. |
WEI X D, HUANG Q D, RAO R, et al. Research on series compound equilibrium mode of liquid metal battery[J]. Power Capacitor & Reactive Power Compensation, 2024, 45(3): 130-136. DOI: 10.14044/j.1674-1757.pcrpc.2024.03.017. | |
206 | YAN Y L, YANG F B, ZHANG H G, et al. Thermodynamic evaluation of a novel Rankine-based pumped thermal energy storage concept targeting thermal coordination and large temperature span[J]. Energy Conversion and Management, 2024, 309: 118439. DOI: 10.1016/j.enconman.2024.118439. |
207 | XUE X J, WANG H N, WANG J H, et al. Experimental and numerical investigation on latent heat/cold stores for advanced pumped-thermal energy storage[J]. Energy, 2024, 300: 131490. DOI: 10.1016/j.energy.2024.131490. |
208 | WANG K, SHI X P, HE Q. Thermodynamic analysis of novel carbon dioxide pumped-thermal energy storage system[J]. Applied Thermal Engineering, 2024, 255: 123969. DOI: 10. 1016/j.applthermaleng.2024.123969. |
209 | HUANG B F, FANG Y C, MIAO Z, et al. Thermodynamic analysis and optimization of the TI-PTES based on ORC/OFC with zeotropic mixture working fluids[J]. Journal of Energy Storage, 2024, 100: 113669. DOI: 10.1016/j.est.2024.113669. |
210 | HU Y, YAO E R, ZHONG L K, et al. Techno-economic analysis of thermochemical-integrated pumped thermal energy storage system[J]. Journal of Energy Storage, 2024, 104: 114394. DOI: 10.1016/j.est.2024.114394. |
211 | 丁扬, 王翰文, 陆文杰, 等. 基于热泵储电的绝热钙循环卡诺电池系统特性及优化研究[J]. 储能科学与技术, 2024, 13(12): 4247-4258. DOI: 10.19799/j.cnki.2095-4239.2024.0918. |
DING Y, WANG H W, LU W J, et al. Characteristics and optimization study of an adiabatic Calooping Carnot battery system based on pumped thermal electricity storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4247-4258. DOI: 10.19799/j.cnki.2095-4239.2024.0918. | |
212 | 章颢缤, 周宇, 刘琰, 等. 超临界二氧化碳-高温热泵联合储能发电系统设计及分析[J]. 热力发电, 2024, 53(4): 53-62. DOI: 10. 19666/j.rlfd.202312175. |
ZHANG H B, ZHOU Y, LIU Y, et al. Design and analysis of a supercritical carbon dioxide and high-temperature heat pump combined energy storage and power generation system[J]. Thermal Power Generation, 2024, 53(4): 53-62. DOI: 10.19666/j.rlfd.202312175. | |
213 | 肖振坤, 陈珍, 杨壮, 等. 基于相变储热的先进高温热泵储能单元的热力学分析[J]. 储能科学与技术, 2024, 13(12): 4330-4338. DOI: 10.19799/j.cnki.2095-4239.2024.0910. |
XIAO Z K, CHEN Z, YANG Z, et al. Thermodynamic analysis of an advanced high-temperature heat pump energy storage unit based on phase-change heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4330-4338. DOI: 10. 19799/j.cnki.2095-4239.2024.0910. | |
214 | ZHAO Y, XIE Y, SONG J, et al. Second-law thermodynamic assessment of cascaded latent-heat stores for pumped-thermal electricity storage[J]. Applied Thermal Engineering, 2025, 262: 125290. DOI: 10.1016/j.applthermaleng.2024.125290. |
215 | LIU Z, ZHANG Y L, ZHANG Y, et al. Performance of a high-temperature transcritical pumped thermal energy storage system based on CO2 binary mixtures[J]. Energy, 2024, 305: 132300. DOI: 10.1016/j.energy.2024.132300. |
216 | WU D, MA B, ZHANG J, et al. Working fluid pair selection of thermally integrated pumped thermal electricity storage system for waste heat recovery and energy storage[J]. Applied Energy, 2024, 371: 123693. DOI: 10.1016/j.apenergy.2024.123693. |
217 | LI Y C, HU P, NI H, et al. Performance analysis and optimisation of waste heat recovery system based on zeotropic working fluid[J]. Applied Thermal Engineering, 2024, 253: 123799. DOI: 10.1016/j.applthermaleng.2024.123799. |
218 | ZHOU T, SHI L F, SUN X C, et al. Performance enhancement of thermal-integrated Carnot battery through zeotropic mixtures[J]. Energy, 2024, 311: 133328. DOI: 10.1016/j.energy. 2024. 133328. |
219 | WANG P L, LI Q B, WANG S K, et al. Thermo-economic and life cycle assessment of pumped thermal electricity storage systems with integrated solar energy contemplating distinct working fluids[J]. Energy Conversion and Management, 2024, 318: 118895. DOI: 10.1016/j.enconman.2024.118895. |
220 | WANG P L, LI Q B, WANG S K. Study of two thermally integrated pumped thermal electricity storage systems using distinct working fluid groups: Performance comparison[J]. Case Studies in Thermal Engineering, 2024, 61: 105103. DOI: 10. 1016/j.csite.2024.105103. |
221 | 宋文俊, 贺中禄, 曹彬, 等. 基于亚临界有机朗肯循环的热泵储电系统性能实验研究[J]. 储能科学与技术, 2024, 13(12): 4339-4348. DOI: 10.19799/j.cnki.2095-4239.2024.0706. |
SONG W J, HE Z L, CAO B, et al. Experimental study on the performance of a pumped thermal electricity storage system based on the subcritical organic Rankine cycle[J]. Energy Storage Science and Technology, 2024, 13(12): 4339-4348. DOI: 10.19799/j.cnki.2095-4239.2024.0706. | |
222 | 安旭刚, 何青, 张千旭. 热泵储电系统多物理域建模与动态仿真研究[J]. 动力工程学报, 2024, 44(10): 1592-1599. DOI: 10.19805/j.cnki.jcspe.2024.230508. |
AN X G, HE Q, ZHANG Q X. Research on multi-physics domain modeling and dynamic simulation of pumped thermal electricity storage system[J]. Journal of Chinese Society of Power Engineering, 2024, 44(10): 1592-1599. DOI: 10.19805/j.cnki.jcspe.2024.230508. | |
223 | SUBIRES A J, ROVIRA A, MUÑOZ M. Proposal and study of a pumped thermal energy storage to improve the economic results of a concentrated solar power that works with a hybrid Rankine-brayton propane cycle[J]. Energies, 2024, 17(9): 2005. DOI: 10.3390/en17092005. |
224 | CHEN L Q, WANG J F, LOU J W, et al. Thermo-economic analysis of a pumped thermal energy storage combining cooling, heating and power system coupled with photovoltaic thermal collector: Exploration of low-grade thermal energy storage[J]. Journal of Energy Storage, 2024, 96: 112718. DOI: 10.1016/j.est.2024.112718. |
225 | WANG H N, XUE X J, ZHAO C Y. Performance analysis on combined energy supply system based on Carnot battery with packed-bed thermal energy storage[J]. Renewable Energy, 2024, 228: 120702. DOI: 10.1016/j.renene.2024.120702. |
226 | ZHANG Y L, LIU J X, LIU Z. Thermo-economic examination of ocean heat-assisted pumped thermal energy storage system using transcritical CO2 cycles[J]. Applied Thermal Engineering, 2024, 255: 123992. DOI: 10.1016/j.applthermaleng. 2024. 123992. |
227 | WANG P L, LI Q B, WANG S K. Comparative study of an innovative coldly integrated pumped thermal electricity storage system: Thermo-economic assessment and multi-objective optimization[J]. Applied Thermal Engineering, 2024, 257: 124295. DOI: 10.1016/j.applthermaleng.2024.124295. |
228 | 冯军胜, 严亚茹, 赵亮, 等. 基于有机朗肯循环的卡诺电池热储能系统性能分析[J]. 储能科学与技术, 2024, 13(11): 3930-3938. DOI: 10.19799/j.cnki.2095-4239.2024.0507. |
FENG J S, YAN Y R, ZHAO L, et al. Performance analysis of a Carnot battery thermal energy storage system based on organic Rankine cycle[J]. Energy Storage Science and Technology, 2024, 13(11): 3930-3938. DOI: 10.19799/j.cnki. 2095-4239.2024.0507. | |
229 | 冯军胜, 严亚茹, 王璐, 等. 耦合低温余热回收的热泵储电系统热力学性能研究[J]. 储能科学与技术, 2024, 13(12): 4384-4395. DOI: 10.19799/j.cnki.2095-4239.2024.0780. |
FENG J S, YAN Y R, WANG L, et al. Thermodynamic performance study of a pumped thermal energy storage system coupled with low-temperature waste heat recovery[J]. Energy Storage Science and Technology, 2024, 13(12): 4384-4395. DOI: 10.19799/j.cnki.2095-4239.2024.0780. | |
230 | 于水, 韩府宏, 李睿哲, 等. 需求侧管理下带有热泵和储能的混合光伏/热能耦合系统全季节运行优化分析[J]. 可再生能源, 2024, 42(9): 1161-1169. DOI: 10.13941/j.cnki.21-1469/tk.2024.09.004. |
YU S, HAN F H, LI R Z, et al. Demand-side management-based optimization of all-season performance of a hybrid photovoltaic/thermal-linked system with a heat pump[J]. Renewable Energy Resources, 2024, 42(9): 1161-1169. DOI: 10.13941/j.cnki.21-1469/tk.2024.09.004. | |
231 | 童文煊. 基于重力储能的复合储能系统技术特性及控制策略研究[D]. 北京: 华北电力大学, 2024. DOI: 10.27140/d.cnki.ghbbu. 2024.000804. |
TONG W X. Research on technical characteristics and control strategies of composite energy storage system based on gravity energy storage[D]. Beijing: North China Electric Power University, 2024. DOI: 10.27140/d.cnki.ghbbu.2024.000804. | |
232 | 李明, 亚夏尔·吐尔洪, 查鲲鹏, 等. 用于快速响应负荷需求的两段式斜坡重力储能系统放电功率调节方法[J]. 电机与控制应用, 2024, 51(4): 12-19. |
LI M, YAXIAER T, CHA K P, et al. Discharging power adjustment of two-stage ramp-type gravity energy storage system for fast response to load demand[J]. Electric Machines & Control Application, 2024, 51(4): 12-19. | |
233 | 张京业, 林玉鑫, 邱清泉, 等. 基于斜坡和山体的重力储能技术研究进展[J]. 储能科学与技术, 2024, 13(3): 924-933. DOI: 10. 19799/j.cnki.2095-4239.2023.0667. |
ZHANG J Y, LIN Y X, QIU Q Q, et al. Gravity energy storage technology based on slopes and mountains[J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667. | |
234 | 周冲. 斜坡式重力储能电气系统关键技术研究[D]. 哈尔滨: 哈尔滨理工大学, 2024. DOI: 10.27063/d.cnki.ghlgu.2024.001401. |
ZHOU C. Research on key technologies of slope gravity energy storage electrical system[D]. Harbin: Harbin University of Science and Technology, 2024. DOI: 10.27063/d.cnki.ghlgu. 2024.001401. | |
235 | 刘大猛, 牟雪鹏, 石博豪, 等. 斜坡式重力储能系统机械与电气联合仿真的多软件协同建模方法[J]. 储能科学与技术, 2024, 13(9): 3266-3276. DOI: 10.19799/j.cnki.2095-4239.2024.0243. |
LIU D M, MOU X P, SHI B H, et al. Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(9): 3266-3276. DOI: 10. 19799/j.cnki.2095-4239.2024.0243. | |
236 | 张陵, 南东亮, 赵启, 等. 基于重力储能的混合储能系统容量优化配置[J]. 计算机仿真, 2024, 41(1): 103-110. |
ZHANG L, NAN D L, ZHAO Q, et al. Optimal configuration of hybrid energy storage system capacity based on gravity energy storage battery[J]. Computer Simulation, 2024, 41(1): 103-110. | |
237 | 王建元, 烁伦. 用户侧重力-蓄电池混合储能系统配置优化与效益分析[J]. 电气应用, 2024, 43(1): 8-17. |
WANG J Y, SHUO L. Configuration optimization and benefit analysis of user side gravity-battery hybrid energy storage system[J]. Electrotechnical Application, 2024, 43(1): 8-17. | |
238 | 邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术[J]. 储能科学与技术, 2024, 13(3): 934-945. DOI: 10. 19799/j.cnki.2095-4239.2023.0789. |
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789. | |
239 | 李震, 王斌, 牟雪鹏, 等. 基于瞬时功率镜像补偿的斜坡式重力储能系统功率平滑控制策略[J]. 电机与控制应用, 2024, 51(5): 12-20. DOI: 10.12177/emca.2024.026. |
LI Z, WANG B, MOU X P, et al. Power smoothing control strategy for slope gravity energy storage system based on instantaneous power mirror compensation[J]. Electric Machines & Control Application, 2024, 51(5): 12-20. DOI: 10. 12177/emca.2024.026. | |
240 | 崔文倩, 魏军强, 赵云灏, 等. 双碳目标下含重力储能的配电网多目标运行优化[J]. 电力建设, 2023, 44(4): 45-53. DOI: 10.12204/j.issn.1000-7229.2023.04.006. |
CUI W Q, WEI J Q, ZHAO Y H, et al. Multi-objective operation optimization of distribution network with gravity energy storage under double carbon target[J]. Electric Power Construction, 2023, 44(4): 45-53. DOI: 10.12204/j.issn.1000-7229. 2023. 04.006. | |
241 | 杨川, 郝正航, 陈巨龙. 斜坡式重力储能系统的并网控制研究[J]. 中外能源, 2024, 29(6): 26-32. |
YANG C, HAO Z H, CHEN J L. Research on grid connection control of slope gravity energy storage system[J]. Sino-Global Energy, 2024, 29(6): 26-32. | |
242 | 张品. 废弃矿井重力储能技术研究[D]. 大同: 山西大同大学, 2024. DOI: 10.48978/d.cnki.gckha.2024.000088. |
ZHANG P. Research on gravity energy storage technology of abandoned mine[D]. Datong: Shanxi Datong University, 2024. DOI: 10.48978/d.cnki.gckha.2024.000088. | |
243 | TANG M K, ZHAO X, HAN R, et al. Electrolyte decoupling strategy for metal oxide-based zinc-ion batteries free of crosstalk effect[J]. Angewandte Chemie International Edition, 2025, 64(11): e202421574. DOI: 10.1002/anie.202421574. |
244 | DENG R Y, YUAN Y, LI Z X, et al. A liquid-infiltrated Al2O3 framework electrolyte enables aqueous zinc batteries[J]. Chemical Communications, 2024, 60(97): 14423-14426. DOI: 10.1039/D4CC04928D. |
245 | ZHAO X, FU J P, CHEN M, et al. A self-phase separated electrolyte toward durable and rollover-stable zinc metal batteries[J]. Journal of the American Chemical Society, 2025, 147(3): 2714-2725. DOI: 10.1021/jacs.4c15132. |
246 | ZHU G Y, ZHANG H C, LU J Q, et al. 3D printing of MXene-enhanced ferroelectric polymer for ultrastable zinc anodes[J]. Advanced Functional Materials, 2024, 34(1): 2305550. DOI: 10.1002/adfm.202305550. |
247 | HUANG Y F, YAN H, LIU W B, et al. Transforming zinc-ion batteries with DTPA-Na: A synergistic SEI and CEI engineering approach for exceptional cycling stability and self-discharge inhibition[J]. Angewandte Chemie International Edition, 2024, 63(48): e202409642. DOI: 10.1002/anie.202409642. |
248 | DING Y C, HUANG D, WANG Y, et al. "Water-In-oil" electrolyte enabled by microphase separation regulation for highly reversible zinc metal anode[J]. Advanced Materials, 2025, 37(14): 2419221. DOI: 10.1002/adma.202419221. |
249 | AN Y L, SHU C, LIU Y Q, et al. Modulating the hydrogen bond for a stable zinc anode with a wide temperature range via the sucrose and polyacrylamide synergistic effect[J]. ACS Nano, 2025, 19(11): 11146-11163. DOI: 10.1021/acsnano.4c18178. |
250 | WANG H, MENG J S, XIAO Z T, et al. Strain-modulated Mn-rich layered oxide enables highly stable potassium-ion batteries[J]. Energy Storage Materials, 2024, 67: 103324. DOI: 10.1016/j.ensm.2024.103324. |
251 | LIU X W, GUO Y Q, ZHANG Q, et al. K-rich spinel interface of air-stable layered oxide cathodes for potassium-ion batteries[J]. Advanced Materials, 2024, 36(45): 2407980. DOI: 10.1002/adma.202407980. |
252 | WU L C, DAI Z Q, FU H W, et al. Multiple electron transfers enable high-capacity cathode through stable anionic redox[J]. Advanced Materials, 2025, 37(9): 2416298. DOI: 10.1002/adma.202416298. |
253 | REN J K, XING B Y, LUO W, et al. Low-temperature-pyrolysis preparation of nanostructured graphite towards rapid potassium storage with high initial Coulombic efficiency[J]. Nano Research, 2024, 17(6): 5138-5147. DOI: 10.1007/s12274-024-6429-4. |
254 | WANG F Y, YANG T, FENG W C, et al. Homogeneous adsorption of multiple potassiation products of red phosphorus anode toward stable potassium storage[J]. ACS Nano, 2024, 18(26): 17197-17208. DOI: 10.1021/acsnano.4c04344. |
255 | HAN K, TAN C Q, FENG S C, et al. Robust π-conjugated hydrogen-bonded organic framework nanowires enable stable and fast potassium storage[J]. Advanced Functional Materials, 2025, 35(1): 2407452. DOI: 10.1002/adfm.202407452. |
256 | XU Y H, GAN X C, PEI J, et al. Applications of artificial intelligence and computational intelligence in hydraulic optimization of centrifugal pumps: A comprehensive review[J]. Engineering Applications of Computational Fluid Mechanics, 2025, 19(1): DOI: 10.1080/19942060.2025.2474675. |
257 | LUO H C, ZHOU P J, CUI J Y, et al. Energy performance prediction of centrifugal pumps based on adaptive support vector regression[J]. Engineering Applications of Artificial Intelligence, 2025, 145: 110247. DOI: 10.1016/j.engappai. 2025.110247. |
258 | WANG Z T, CHEN J S, WANG G J, et al. Geometry prediction and design for energy storage salt Caverns using artificial neural network[J]. Energy, 2024, 308: 132820. DOI: 10.1016/j.energy.2024.132820. |
259 | YUN P Y, WU H P, ALSENANI T R, et al. On the utilization of artificial intelligence for studying and multi-objective optimizing a compressed air energy storage integrated energy system[J]. Journal of Energy Storage, 2024, 84: 110839. DOI: 10.1016/j.est.2024.110839. |
260 | LIU T T, GAO L M, LI R Y. Experimental data-driven flow field prediction for compressor cascade based on deep learning and ℓ1 regularization[J]. Journal of Thermal Science, 2024, 33(5): 1867-1882. DOI: 10.1007/s11630-024-2035-8. |
261 | 魏乐, 李承霖, 房方, 等. 小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗[J]. 电网技术, 2025, 49(1): 366-372. DOI: 10.13335/j.1000-3673.pst.2023.2001. |
WEI L, LI C L, FANG F, et al. Optimization of convolutional neural network based on improved sparrow algorithm for flywheel energy storage system loss in small sample[J]. Power System Technology, 2025, 49(1): 366-372. DOI: 10.13335/j. 1000-3673.pst.2023.2001. | |
262 | HUANG G C, HUANG F Q, DONG W J. Machine learning in energy storage material discovery and performance prediction[J]. Chemical Engineering Journal, 2024, 492: 152294. DOI: 10.1016/j.cej.2024.152294. |
263 | GUO X Y, WANG Z B, YANG J H, et al. Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(17): 10124-10136. DOI: 10.1039/D4TA00721B. |
264 | LIU D P, GE H Y, SONG M M, et al. Machine learning driven optimization of electrolyte for highly reversible Zn-air batteries with superior long-term cycling performance[J]. Advanced Materials, 2025, 37(7): 2417161. DOI: 10.1002/adma. 202417161. |
265 | 宋国华. 不同泥沙条件下水轮机基材磨蚀特性试验研究及磨蚀量预测[D]. 西安: 西安理工大学, 2024. DOI: 10.27398/d.cnki.gxalu.2024.000696. |
SONG G H. Experimental investigation on the erosive behavior of hydro turbine materials under various sediment conditions and the prediction of erosive weight loss[D]. Xi'an: Xi'an University of Technology, 2024. DOI: 10.27398/d.cnki.gxalu. 2024.000696. | |
266 | XU Y H, WANG X, ZHANG J, et al. Experimental investigation and artificial neural network prediction of small-scale compressed air energy storage system based on pneumatic motor[J]. Thermal Science and Engineering Progress, 2024, 47: 102287. DOI: 10.1016/j.tsep.2023.102287. |
267 | CHEN T X, LAI X, CHEN F, et al. Empowering lithium-ion battery manufacturing with big data: Current status, challenges, and future[J]. Journal of Power Sources, 2024, 623: 235400. DOI: 10.1016/j.jpowsour.2024.235400. |
268 | 焦君宇, 张全權, 陈宁波, 等. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. DOI: 10. 19799/j.cnki.2095-4239.2024.0635. |
JIAO J Y, ZHANG Q Q, CHEN N B, et al. Development and applications of an intelligent big data analysis platform for batteries[J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213. DOI: 10.19799/j.cnki.2095-4239.2024.0635. | |
269 | CHEN X, LIU M Y, NIU Y J, et al. Deep-learning-based lithium battery defect detection via cross-domain generalization[J]. IEEE Access, 2024, 12: 78505-78514. |
270 | 刘子玉, 姜泽坤, 邱伟, 等. 人工智能在长时液流电池储能中的应用: 性能优化和大模型[J]. 储能科学与技术, 2024, 13(9): 2871-2883. DOI: 10.19799/j.cnki.2095-4239.2024.0709. |
LIU Z Y, JIANG Z K, QIU W, et al. Application of artificial intelligence in long-duration redox flow batteries storage systems[J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. DOI: 10.19799/j.cnki.2095-4239.2024.0709. | |
271 | FANG M K, ZHANG F F, YANG Y, et al. The influence of optimization algorithm on the signal prediction accuracy of VMD-LSTM for the pumped storage hydropower unit[J]. Journal of Energy Storage, 2024, 78: 110187. DOI: 10.1016/j.est.2023.110187. |
272 | WANG R, YANG W J, HUANG Y F, et al. Coordinating regulation reliability and quality of pumped storage units for renewables by a novel scheduling-control synergic model[J]. Applied Energy, 2024, 376: 124162. DOI: 10.1016/j.apenergy. 2024.124162. |
273 | LI X H, TIAN F F, WANG J J, et al. An ELM data-driven model for predicting erosion rate of string in underground compressed air storage[J]. Process Safety and Environmental Protection, 2024, 185: 761-771. DOI: 10.1016/j.psep.2024.03.014. |
274 | 王宁, 曲建真, 张志强, 等. 基于深度强化学习的轨交飞轮储能系统能量管理[J]. 科技创新与应用, 2025, 15(2): 30-33, 38. DOI: 10.19981/j.CN23-1581/G3.2025.02.006. |
WANG N, QU J Z, ZHANG Z Q, et al. Energy management of rail flywheel energy storage system based on deep reinforcement learning[J]. Technology Innovation and Application, 2025, 15(2): 30-33, 38. DOI: 10.19981/j.CN23-1581/G3.2025.02.006. | |
275 | WANG F J, ZHAI Z, ZHAO Z B, et al. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis[J]. Nature Communications, 2024, 15(1): 4332. DOI: 10.1038/s41467-024-48779-z. |
276 | LIU Y P, AHMED M, FENG J T, et al. Deep learning-powered lifetime prediction for lithium-ion batteries based on small amounts of charging cycles[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 3078-3090. DOI: 10. 1109/TTE.2024.3434553. |
277 | MEI W X, LIU Z, WANG C D, et al. operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14: 5251. DOI: 10.1038/s41467-023-40995-3. |
278 | FAN J B, LIU C C, LI N, et al. Wireless transmission of internal hazard signals in Li-ion batteries[J]. Nature, 2025, 641(8063): 639-645. DOI: 10.1038/s41586-025-08785-7. |
279 | JIA Z Z, MIN Y Y, QIN P, et al. Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries[J]. Journal of Energy Chemistry, 2024, 89: 195-207. DOI: 10.1016/j.jechem.2023.09.052. |
280 | LI J Y, TONG B, GAO P, et al. A novel method to determine the multi-phase ejection parameters of high-density battery thermal runaway[J]. Journal of Power Sources, 2024, 592: 233905. DOI: 10.1016/j.jpowsour.2023.233905. |
281 | TONG B, LI J Y, SUN J H, et al. Restoring the gas diffusion field before the fire of the LiNi0.7Co0.2Mn0.1O2 lithium-ion battery thermal runaway[J]. Journal of Energy Storage, 2024, 88: 111548. DOI: 10.1016/j.est.2024.111548. |
282 | JIA Z Z, WANG S P, QIN P, et al. Investigation of gas diffusion behavior and detection of 86 Ah LiFePO4 batteries in energy storage systems during thermal runaway[J]. Process Safety and Environmental Protection, 2024, 184: 579-588. DOI: 10. 1016/j.psep.2024.01.093. |
283 | ZHANG X, YAO J, ZHU L P, et al. Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems[J]. Journal of Energy Storage, 2024, 77: 109868. DOI: 10.1016/j.est.2023.109868. |
284 | ZHANG W C, YUAN J F, HUANG J F, et al. Uncertainty assessment method for thermal runaway propagation of lithium-ion battery pack[J]. Applied Thermal Engineering, 2024, 238: 121946. DOI: 10.1016/j.applthermaleng.2023.121946. |
285 | ZHANG Y, SONG L F, TIAN J M, et al. Modeling the propagation of internal thermal runaway in lithium-ion battery[J]. Applied Energy, 2024, 362: 123004. DOI: 10.1016/j.apenergy. 2024.123004. |
286 | LIU M, LI X L, QIAN R D, et al. All-climate thermal management performance of power batteries based on double-layer flexible phase change materials[J]. Advanced Functional Materials, 2025, 35(7): 2415370. DOI: 10.1002/adfm. 202415370. |
287 | WANG J, FENG X N, YU Y Z, et al. Rapid temperature-responsive thermal regulator for safety management of battery modules[J]. Nature Energy, 2024, 9(8): 939-946. DOI: 10.1038/s41560-024-01535-5. |
288 | HAN H W, XIONG F, QIN M L, et al. Intrinsic flame-retardant phase change materials for battery thermal management during rapid cycling and thermal runaway[J]. Energy Storage Materials, 2025, 77: 104175. DOI: 10.1016/j.ensm. 2025. 104175. |
289 | LIU Q, QIN L, SHI Q L, et al. Optimization of the active battery immersion cooling based on a self-organized fluid flow design[J]. Journal of Energy Storage, 2024, 76: 109851. DOI: 10. 1016/j. est.2023.109851. |
290 | WANG J J, YU Y, SONG L F, et al. Thermal management performance and optimization of a novel system combining heat pipe and composite fin for prismatic lithium-ion batteries[J]. Energy Conversion and Management, 2024, 302: 118106. DOI: 10.1016/j.enconman.2024.118106. |
291 | LI Y X, JIANG L H, ZHANG N J, et al. Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring[J]. Journal of Energy Chemistry, 2024, 92: 74-86. DOI: 10.1016/j.jechem.2023.12.049. |
292 | CAI H, LIU X, SUN L, et al. Battery internal short circuit diagnosis based on vision transformer without real data[J]. The Innovation Energy, 2024, 1(3): 100041. |
293 | MENG X D, WANG Z D, LIU B Z, et al. Enhancing extinguishing efficiency for lithium-ion battery fire: Investigating the extinguishing mechanism and surface/interfacial activity of F-500 microcapsule extinguishing agent[J]. eTransportation, 2024, 22: 100357. DOI: 10.1016/j.etran.2024.100357. |
294 | ZHOU G, LI Y Y, LIU Y, et al. Preparation of a novel environmental-friendly lithium-ion battery fire suppression microcapsule and its fire extinguishing mechanism in coordination with ABC dry powder[J]. Journal of Cleaner Production, 2024, 448: 141438. DOI: 10.1016/j.jclepro. 2024. 141438. |
295 | PING P, GAO X Z, KONG D P, et al. Experimental study on the synergistic strategy of liquid nitrogen and water mist for fire extinguishing and cooling of lithium-ion batteries[J]. Process Safety and Environmental Protection, 2024, 188: 713-725. DOI: 10.1016/j.psep.2024.05.077. |
[1] | 樊慧敏, 彭浩鸿, 孟辉, 唐梦宏, 易昊昊, 丁静, 刘金成, 徐成善, 冯旭宁. 储能电池模组膨胀力特性研究及仿真分析[J]. 储能科学与技术, 2025, 14(6): 2488-2497. |
[2] | 袁帅, 崔煜杰, 程东浩, 台枫, 吴金中. 2017—2024年全球电化学储能电站火灾爆炸事故统计分析[J]. 储能科学与技术, 2025, 14(6): 2362-2376. |
[3] | 尹朝莛, 郭威, 王金鑫, 孟洋. 水系锌离子电池正极的改性策略及发展展望[J]. 储能科学与技术, 2025, 14(6): 2320-2335. |
[4] | 段永龙, 滑夏, 韩子娇, 谢冰, 胡姝博, 李爱魁. 全钒液流电池容量衰减与抑制技术研究进展[J]. 储能科学与技术, 2025, 14(6): 2540-2554. |
[5] | 王斌, 谭鋆, 李凤合, 蔺新星, 关苏敏, 丁若晨, 苏文. 基于CO2 混合工质的压缩储能系统性能[J]. 储能科学与技术, 2025, 14(6): 2391-2404. |
[6] | 郝俊博, 闫广颖, 裴红兰, 赵盈鑫, 郝晋. 基于贡献度的台区分布式新能源共享储能合作联盟收益分配策略[J]. 储能科学与技术, 2025, 14(6): 2462-2472. |
[7] | 贺悝, 冷肇星, 谭庄熙, 李雪源, 吴晓文, 陈超洋. 考虑放电倍率的电池储能容量自适应SOC估计方法[J]. 储能科学与技术, 2025, 14(6): 2405-2415. |
[8] | 孙振新, 张秩鸣, 张怡, 李海昭, 廖海燕, 魏良杰. 基于熵理论的储能配置方法研究[J]. 储能科学与技术, 2025, 14(6): 2431-2438. |
[9] | 刘康彬, 申海川, 赵贯甲, 谢文涛, 荀玮瑶. 自增压型超高压水热储能实验和数值模拟研究[J]. 储能科学与技术, 2025, 14(6): 2352-2361. |
[10] | 邵尹池, 巩宇, 牛萌, 杨若奂, 刘雅婷, 丁然. 计及相角与幅值跳变的构网型储能短路电流特性及其计算模型[J]. 储能科学与技术, 2025, 14(6): 2451-2461. |
[11] | 谈家宝, 王育飞, 薛花. 活塞式重力储能系统建模与性能分析[J]. 储能科学与技术, 2025, 14(6): 2383-2390. |
[12] | 屈笑羽, 豆流鑫. 储能技术在食品电商冷链物流中的创新应用与前景分析[J]. 储能科学与技术, 2025, 14(6): 2336-2338. |
[13] | 李政, 任旭凯. 储能电站消防安全管理举措探析[J]. 储能科学与技术, 2025, 14(6): 2377-2379. |
[14] | 张路霞. 基于可重构电池的储能安全系统设计与机制分析[J]. 储能科学与技术, 2025, 14(6): 2380-2382. |
[15] | 陈勋. 基于深度强化学习的储能系统能量管理与优化调度策略[J]. 储能科学与技术, 2025, 14(6): 2439-2441. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||