| [1] |
ANSARI K B, MASHKOOR R, NAIM M A, et al. A critical review on pure and hybrid electrode supercapacitors, economics of HESCs, and future perspectives[J]. Journal of Energy Storage, 2025, 112: 115564. DOI: 10.1016/j.est.2025.115564.
|
| [2] |
MANFO T A, LAAKSONEN H. A review of carbon-based hybrid materials for supercapacitors[J]. New Carbon Materials, 2025, 40(1): 81-110. DOI: 10.1016/S1872-5805(25)60943-7.
|
| [3] |
MURALEE GOPI C V V, ALZAHMI S, NARAYANASWAMY V, et al. Supercapacitors: A promising solution for sustainable energy storage and diverse applications[J]. Journal of Energy Storage, 2025, 114: 115729. DOI: 10.1016/j.est.2025.115729.
|
| [4] |
EL-YAQUB B, WAHID M H, ZAINAL Z, et al. Porous carbon foams supported rGO-ppy// rGO for asymmteric supercapacitor device[J]. Materials Science and Engineering: B, 2025, 317: 118173. DOI: 10.1016/j.mseb.2025.118173.
|
| [5] |
YAN W J, SUN Z J, DONG K M, et al. Effects of dry and wet torrefaction pretreatment on the physicochemical structure of corn stover-derived porous carbon and its performance in supercapacitor applications[J]. Biomass and Bioenergy, 2025, 197: 107773. DOI: 10.1016/j.biombioe.2025.107773.
|
| [6] |
ALI Z, ATHIR N, KHAN A M, et al. Function of a hard template to develop O, N, and P codoped carbon from polyphosphazene as supercapacitor cathode[J]. Fuel, 2025, 392: 134963. DOI: 10. 1016/j.fuel.2025.134963.
|
| [7] |
KAR T, MARTÍNEZ DÍAZ I, CASALES-DÍAZ M, et al. Carbonized zeolitic imidazolate framework-incorporated electrospun polymeric nanofiber composite for supercapacitor applications[J]. Materials Letters, 2025, 379: 137698. DOI: 10.1016/j.matlet. 2024. 137698.
|
| [8] |
KIM E B, AKHTAR M S, KONG I, et al. Carbonized porous zeolitic imidazolate framework as promising electrode for electrochemical supercapacitors[J]. Electrochimica Acta, 2024, 507: 145110. DOI: 10.1016/j.electacta.2024.145110.
|
| [9] |
BASHIR J, ILYAS S, et al. Polyelectrolyte multilayer-based nanofiltration membranes with tunable performance for target pollutants[J]. ACS Applied Polymer Materials, 2025, 7(5): 3147-3156. DOI: 10.1021/acsapm.4c03906.
|
| [10] |
YU M M, PENG Y Y, WANG X Y, et al. Precise controlling microstructure of all-in-one hybrid membrane achieved via Hansen solubility parameters after introducing nonsolvent component toward implantable energy storage device[J]. Macromolecules, 2024, 57(19): 9429-9441. DOI: 10.1021/acs.macromol.4c01201.
|
| [11] |
HU G D, LAN J, SUN H J, et al. Design and preparation of hierarchical porous carbon-based materials with bionic "ant nest" structure for high performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2023, 968: 172029. DOI: 10. 1016/j.jallcom.2023.172029.
|
| [12] |
KONG L R, MA Q, XU Z Y, et al. Three-dimensional graphene network deposited with mesoporous nitrogen-doped carbon from non-solvent induced phase inversion for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 558: 21-31. DOI: 10.1016/j.jcis.2019.09.095.
|
| [13] |
COLAK S G, SIMSEK U B, AYDıN H, et al. Enhanced supercapacitor performance with CZTS-based carbon nanocomposites electrodes: An electrochemical study[J]. Journal of Colloid and Interface Science, 2025, 682: 478-490. DOI: 10. 1016/j.jcis.2024.11.207.
|
| [14] |
ZHANG K, ZHANG R, WANG Q G, et al. Boosting internal accessibility via 50-nm-diameter channels in NiO@nitrogen-containing carbon for high rate performance and high contribution of electric double layer capacitance[J]. Chemical Engineering Journal, 2025, 506: 159991. DOI: 10.1016/j.cej.2025.159991.
|
| [15] |
KHALAF M M, ABD EL-LATEEF H M, SHAALAN N M, et al. Ultrasonication-induced functionalization of MWCNTs with ZnSi, ZnNi, and ZnTi bimetallic oxides: Comprehensive structural characterization and electrochemical performance for energy storage application[J]. Journal of Energy Storage, 2025, 112: 115540. DOI: 10.1016/j.est.2025.115540.
|
| [16] |
ZHANG S Q, CAO W F, XU A Z, et al. Alternating electrodeposition fabrication of graphene-buffered nickel-cobalt layered double hydroxide supercapacitor electrodes with superior rate capability[J]. Journal of Colloid and Interface Science, 2025, 689: 137270. DOI: 10.1016/j.jcis.2025.137270.
|
| [17] |
QU D Y, SHI H. Studies of activated carbons used in double-layer capacitors[J]. Journal of Power Sources, 1998, 74(1): 99-107. DOI: 10.1016/S0378-7753(98)00038-X.
|
| [18] |
WANG J J, DONG K M, SUN Z J, et al. Preparation of hierarchically porous graphitic carbon materials from peanut shell via a facile catalytic activation method for supercapacitor applications[J]. Journal of Analytical and Applied Pyrolysis, 2025, 189: 107110. DOI: 10.1016/j.jaap.2025.107110.
|
| [19] |
STOLLER M D, RUOFF R S. Best practice methods for determining an electrode material's performance for ultracapacitors[J]. Energy & Environmental Science, 2010, 3(9): 1294-1301. DOI: 10.1039/C0EE00074D.
|
| [20] |
JOMEKIAN A, BAZOOYAR B, BEHBAHANI R M. ZIF-8 modified by Pluronic P123 copolymer with enlarged pores and enhanced textural properties for CO2/CH4 and CO2/N2 separations[J]. Journal of Solid State Chemistry, 2020, 289: 121532. DOI: 10. 1016/j.jssc.2020.121532.
|
| [21] |
LOBATO-PERALTA D R, OKOLIE J A, ORUGBA H O, et al. Evaluating the impact of pre-carbonization on activated carbon production from animal-origin precursors for supercapacitor electrode applications[J]. Biomass and Bioenergy, 2025, 193: 107574. DOI: 10.1016/j.biombioe.2024.107574.
|
| [22] |
WANG J J, SUN Z J, DONG K M, et al. Synthesis of porous graphitic carbon electrode materials based on Fe-Ni dual transition metal elements for high-performance supercapacitors[J]. Journal of Power Sources, 2025, 640: 236684. DOI: 10.1016/j.jpowsour.2025.236684.
|
| [23] |
WANG D M, DONG H, ZHANG D Y, et al. In-situ template-assisted self-activation craft for direct preparing mesoporous-dominated N/S Co-doped hierarchical porous carbon for supercapacitors[J]. International Journal of Biological Macromolecules, 2025, 305: 141361. DOI: 10.1016/j.ijbiomac. 2025.141361.
|
| [24] |
YI Y J, HU S Q, MA Y Y, et al. An industrial match: Direct synthesis of O, S Co-doped carbon from featured sulfate pulping black liquor via an efficient sulfurization strategy for advanced zinc ion hybrid capacitors[J]. Chemical Engineering Journal, 2025, 509: 161224. DOI: 10.1016/j.cej.2025.161224.
|
| [25] |
SONG A, LI Y C, ZHU S H, et al. VxOy quantum dot-enhanced nitrogen-sulfur dual-doped hierarchical porous carbon electrodes from waste eggshell membranes for advanced flexible supercapacitors[J]. Journal of Colloid and Interface Science, 2025, 688: 526-539. DOI: 10.1016/j.jcis.2025.02.146.
|
| [26] |
ZHENG J F, CAO T L, DING B P, et al. Facile synthesis of N, P Co-doped carbon materials derived from corn bract for high-performance symmetric supercapacitors[J]. Journal of Energy Storage, 2025, 110: 115297. DOI: 10.1016/j.est.2025.115297.
|
| [27] |
AYDıN H, ÜSTÜN B, ŞAHINTÜRK U, et al. Chemical blowing agents for the fabrication of nitrogen and oxygen Co-doped carbon nanofibers: Structural and supercapacitive study[J]. Journal of Power Sources, 2025, 626: 235756. DOI: 10.1016/j.jpowsour.2024.235756.
|
| [28] |
DAHAL B, MUKHIYA T, OJHA G P, et al. In-built fabrication of MOF assimilated B/N Co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors[J]. Electrochimica Acta, 2019, 301: 209-219. DOI: 10.1016/j.electacta. 2019.01.171.
|
| [29] |
WANG X, GAO Q, ZHOU Y F, et al. N/P Co-doped cellulose carbon aerogel with enhanced supercapacitance[J]. Materials Chemistry and Physics, 2025, 334: 130458. DOI: 10.1016/j.matchemphys.2025.130458.
|
| [30] |
NARIMISA S, MOURADZADEGUN A, ZARGAR B, et al. Preparation of N-doped carbon material derived from porous organic polymer as an active center to growth nickel cobalt phosphide for high-performance supercapacitors[J]. Journal of Energy Storage, 2024, 103: 114340. DOI: 10.1016/j.est. 2024. 114340.
|
| [31] |
CHENG X Y, ZHANG L H, LI L Y, et al. One-step carbonization synthesis of N, S Co-doped carbon materials derived from agricultural waste peanut shells for high-performance symmetric supercapacitors[J]. Chemistry-A European Journal, 2024, 30(69): e202402597. DOI: 10.1002/chem.202402597.
|
| [32] |
SARAVANAN M, RAMESH K, KIRUTHIGA M, et al. Preparation of N and S heteroatoms doped activated carbon from stalks of Gossypium hirsutum L. flower for high-performance symmetric supercapacitor application[J]. Applied Physics A, 2024, 130(10): 764. DOI: 10.1007/s00339-024-07931-8.
|
| [33] |
KANG O Y, KIM G H, KIM H C, et al. Facile fabrication of polyacrylonitrile-based carbon nanofibers with multimodal channel using polycaprolactone as sacrificial polymer for boosting ion transfer[J]. Journal of Power Sources, 2025, 639: 236631. DOI: 10.1016/j.jpowsour.2025.236631.
|