• •
杨蕊1(), 乔洋1, 周奕锟1, 张雨欣1, 王晨1,2,3, 赵学敏1,2,3(
), 折晓会1,2,3
收稿日期:
2025-04-17
修回日期:
2025-05-11
通讯作者:
赵学敏
E-mail:3584115201@qq.com;1625085843@qq.com
作者简介:
杨蕊(2004—),女,本科(在读),研究方向:水合盐热化学材料,E-mail:3584115201@qq.com;
基金资助:
Rui YANG1(), Yang QIAO1, Yikun ZHOU1, Yuxing ZHANG1, Chen WANG1,2,3, Xuemin ZHAO1,2,3(
), Xiaohui SHE1,2,3
Received:
2025-04-17
Revised:
2025-05-11
Contact:
Xuemin ZHAO
E-mail:3584115201@qq.com;1625085843@qq.com
摘要:
热化学储能技术利用热化学储能材料可逆的化学反应来储放热,材料的性能直接决定了热化学储热系统的效率与应用潜力。目前,热化学储能材料推广应用面临着热传导率低、转化率低、循环稳定性差和成本高昂等问题。本文综述了不同温区分类下热化学储热材料在跨季节储能中的研究进展和优化路径,重点讨论了热化学储热材料的制备方法和改性方式。回顾了低温水合盐、氨络合物、金属氧化物、金属氢化物、氢氧化物、碳酸盐、氨和有机物等材料的热化学储能特性。针对材料的制备方法,阐述了溶胶-凝胶法、封装成型法、微胶囊法、浸渍法的原理和典型应用实例,着重介绍了聚合物、无机氧化物、陶瓷这三种壳封装材料的不同点并对比分析了干法浸渍和湿法浸渍的优缺点及适用场景。针对材料的改性方式,主要介绍了物理改性、化学改性、复合材料掺杂三种方式,对改性前后热化学储能材料的物理和化学特性进行了差异化分析。综合分析表明,通过选择合适材料制备方法以及利用化学元素掺杂、金属表面涂层、物理结构调控和多孔载体复合等改性方式,可以显著提高材料的循环稳定性、使用寿命、反应活性和储热密度,有望促使热化学储能技术商业化应用的早日实现。
杨蕊, 乔洋, 周奕锟, 张雨欣, 王晨, 赵学敏, 折晓会. 热化学储能材料的制备及其在跨季节储能中的应用进展研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0381.
Rui YANG, Yang QIAO, Yikun ZHOU, Yuxing ZHANG, Chen WANG, Xuemin ZHAO, Xiaohui SHE. Research on the preparation of thermochemical energy storage materials and application in cross-season energy storage[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0381.
表1
适合低温热化学储能的水合盐列表[24]"
水合盐材料 | n的最大值 | n的最小值 | 开放系统能量密度(GJ/m3) | 封闭系统能量密度(GJ/m3) | 水化温度(K)(1.2kPa) | 脱水温度(K)(2kPa) | 最低熔点(K) | 价格(€/kg) | 稳定性 |
---|---|---|---|---|---|---|---|---|---|
GdCl3∙nH2O | 6 | 0 | 2.7 | 1.56 | 363 | 371 | - | 稀土金属 | - |
EuCl3∙nH2O | 6 | 0 | 2.61 | 1.52 | 362 | 370 | - | 稀土金属 | - |
CrCl2∙nH2O | 3 | 0 | 2.11 | 1.31 | 334 | 341 | 372 | - | Cr2+不稳定 |
LiCl∙nH2O | 1 | 0 | 2.08 | 1.36 | 339 | 345 | - | 37 | - |
LiBr∙nH2O | 1 | 0 | 2.01 | 1.37 | 376 | 383 | 393 | 37 | - |
FeCl2∙nH2O | 2 | 0 | 1.93 | 1.26 | 326 | 332 | - | - | Fe2+不稳定 |
CsF∙nH2O | 1 | 0 | 1.79 | 1.20 | 357 | 364 | - | >10 | - |
Ca(ClO4)2∙nH2O | 4 | 0 | 1.75 | 1.17 | 365 | 373 | - | - | 爆炸性 |
CuCl2∙nH2O | 2 | 0 | 1.74 | 1.13 | 326 | 332 | >423 | 3 | 急性毒性 |
Na2S∙nH2O | 5 | 0.5 | 2.79 | 1.58 | 339 | 355 | 355 | 0.65 | 产生H2S |
RbF∙nH2O | 1 | 0 | 1.57 | 1.10 | 357 | 364 | - | >10 | - |
CrCl2∙nH2O | 2 | 0 | 1.57 | 1.07 | 335 | 342 | - | - | Cr2+不稳定 |
CaCl2∙nH2O | 2 | 0 | 1.54 | 1.06 | 336 | 384 | 449 | 0.29 | - |
Mg(NO3)2∙nH2O | 6 | 2 | 1.53 | 1.04 | 334 | 341 | 362 | - | 损失N2 |
LiNO2∙nH2O | 1 | 0 | 1.51 | 1.07 | 367 | 375 | - | 37 | 损失N2 |
Mg(NO3)2∙nH2O | 2 | 0 | 1.51 | 1.08 | 378 | 386 | - | - | 损失N2 |
LiI∙nH2O | 3 | 1 | 1.49 | 1.02 | 370 | 368 | - | 37 | - |
LaCl3∙nH2O | 7 | 3 | 1.48 | 1.03 | 339 | 346 | 364 | 稀土元素 | - |
KAl(SO4)2∙nH2O | 3 | 0 | 1.39 | 1.01 | 330 | 336 | 365 | - | |
MnI2∙nH2O | 4 | 0 | 1.39 | 0.90 | 332 | 336 | 353 | 急性毒性 | |
VOSO4∙nH2O | 3 | 1 | 1.35 | 0.98 | 346 | 353 | >10 | 急性毒性 | |
K2CO3∙nH2O | 1.5 | 0 | 1.30 | 0.96 | 332 | 338 | >423 | 1 | - |
MgCl2∙nH2O | 6 | 2 | 1.93 | 1.24 | 334 | 377 | 390 | 0.18 | 产生HCl |
Na2S∙nH2O | 5 | 2 | 1.77 | 1.17 | 339 | 346 | 355 | 0.65 | 产生H2S |
Na2S∙nH2O | 2 | 0.5 | 1.60 | 1.14 | 348 | 355 | 355 | 0.65 | 产生H2S |
表2
热化学储能技术常用储能材料及性能[28]"
名称 | 化学反应 | 产物 | 储能密度(kWh/m3) | 反应温度(K) | 反应压强(MPa) |
---|---|---|---|---|---|
金属氧化物 | 2Co3O4↔6CoO+O2 | Co3O4 | 295 | 973–1123 | 0-1 |
金属氢化物 | MgH2↔Mg+H2 | MgH2 | 580 | 573–773 | 5-10 |
氢氧化物 | Ca(OH)2↔CaO+H2O | Ca(OH)2 | 437 | 623–1173 | 0.1-10.0 |
Mg(OH)2↔MgO+H2O | Mg(OH)2 | 388 | 573–723 | 0.1-10.0 | |
氨 | 2NH3↔N2+3H2 | NH3(l) | 745 | 673–973 | 10-30 |
碳酸盐 | CaCO3↔CaO+CO2 | CaCO3 | 692 | 973–1273 | 0-10 |
PbCO3↔PbO+CO2 | PbCO3 | 303 | 573–1723 | 0-10 | |
甲烷重整 | CH4+H2O↔CO+3H2 | CH4(g) | 7.8 | 873–1223 | 1.0-3.5 |
CH4+CO2↔2CO+2H2 | CH4(g) | 7.7 | 973–1173 | 1.0-3.5 |
表3
热化学储能材料优缺点和技术现状[11]"
材料 | 反应温度(K) | 优点 | 缺点 | 技术现状 |
---|---|---|---|---|
氧化物 | 973以上 | 高反应焓(205 kJ/mol) | 储存O2 | 实验室规模 |
宽操作温度(973-1300K) | 产物有毒(Co3O4/CoO) | |||
低操作压力(0-0.1MPa) | 产物成本高 | |||
无催化剂 | ||||
无副反应(BaO/BaO2) | ||||
高可逆性(500次循环)(Co3O4/CoO) | ||||
金属氢化物 | 573~973 | 高能量密度 | 反应动力学差 | 中试规模 |
高可逆性 | 氢脆 | |||
大量关于储氢和热泵应用的实验反馈 | 材料成本较高 | |||
氢氧化物 | 573以上 | 材料成本低 | 材料结块 | 实验室和中试规模 |
无毒 | 与CO2的副反应 | |||
氨合成/分解 | 673~973 | 易于控制 | 有毒 | 中试规模 |
无副反应 | 遏制成本高 | |||
丰富的工业经验 | 体积能量密度低 | |||
工作压力高 | ||||
碳酸盐 | 573~1723 | 廉价、丰富、无毒 | 可逆性较差 | 实验室和中试规模 |
高能量密度 | 低循环稳定性 | |||
高工作温度(1700K) | 烧结 | |||
适合高温发电 | 物料结块 | |||
与CO2的副反应 | ||||
甲烷重整 | 873~1223 | 高操作温度(1223K) | 体积能量密度低 | 中试规模 |
高质量能量密度 | 催化剂成本高 | |||
更便宜的能量输送方法(最远100-300km) | CO毒性 | |||
SO3/O2/SO2系统 | 1073~1473 | 高工作温度(1473K) | 有毒 | |
硫酸生产中的工业反馈 | 高度腐蚀 | |||
硫基循环 | 773~1473 | 价格便宜且市场有售 | 有毒 | 实验室规模 |
储存稳定 | 需要高度防护的容器 | |||
能量密度为9 MJ/kg | ||||
硫具有成本效益(<0.2€/kg) |
表4
聚合物/无机氧化物/陶瓷作封装层壳材料的优缺点对比"
封装壳层材料 | 聚合物 | 无机氧化物 | 陶瓷 |
---|---|---|---|
优点 | 1.化学惰性减少副反应 | 1.化学惰性较强 | 1.化学惰性强 |
2.良好弹性适应体积变化 | 2.热稳定性高(1273K以上) | 2.热稳定性极高(1273K以上) | |
3.耐磨性好 | 3.耐磨性好 | 3.耐磨性好 | |
4.不影响导热性 | 4.机械稳定性好 | 4.机械稳定性好 | |
5.加工简单,无需高温烧结 | 5.成本效益高 | 5.成本低 | |
缺点 | 1.受熔融/分解温度限制 | 1.需高温烧结,不适用低温敏感核材料 | 1.烧结影响稳定性 |
2.热稳定性低 | 2.脆性高、易断裂 | 2.脆性大,易断裂 | |
3.高温环境失效 | 3.热导性较低 | 3.需要助熔剂/特殊工艺降低烧结温度 | |
4.机械强度较弱 | 4.与材料发生副反应 | 4.热导性低于金属材料 |
表6
热化学储能材料不同掺杂物改性的优缺点[93]"
材料 | 实验添加 | 结果 | 文献 |
---|---|---|---|
Co3O4基材料 | Fe | 与纯钴氧化物相比,其还原/再氧化温度更高且两者温差更小(可通过增加Fe含量调节),再氧化完成度更好,晶粒生长有限且静电充电低、成本低。添加10 mol% Fe:在12次氧化还原循环中具有良好的循环稳定性 | [ |
能量密度和储氧能力降低,且存在烧结和晶粒尺寸增大的问题。Co3O4中添加20摩尔%以上的Fe时,材料不再是单一尖晶石相,而是两种尖晶石的混合物 | |||
Co3O4基材料 | CuO | 与纯钴氧化物相比,在40次氧化还原循环中循环稳定性良好,能量密度相当,且还原反应温度降低50K,氧化与还原之间的温差较小,反应效率较高,烧结现象缓解。 | [ |
Co3O4基材料 | CeO2 | 改善Co3O4的反应动力学,具有高能量密度496 J/g,但热化学稳定性低 | [ |
Co3O4基材料 | Al2O3 | 体积储能密度由870升至1700 kg/m3、晶粒生长有限、再氧化完成度好、低静电荷、氧化反应起始温度增加约27K,而还原不受影响,且10wt%Al2O3在112次循环中显示良好结构稳定性。 | [ |
Co3O4基材料 | Cr2O3 | 良好的再氧化完成、有限的晶粒生长、低静电荷 | [ |
Co3O4基材料 | Y0.15Zr0.85O1.93 | 还原和再氧化过程温差小、能量密度高 | [ |
Co3O4基材料 | SiC | 氧化还原反应弱、能量密度比纯钴氧化物低 | [ |
Co3O4基材料 | NiCo2O4(尖晶石) | 与纯钴氧化物相比,操作温度大致相同,再氧化反应动力学高且再氧化反应完全但还原反应完成率低 | [ |
Co3O4基材料 | CuCo2O4(尖晶石) | 工作温度高但操作温度接近CuO的熔点、再氧化反应完成度和动力学性能较差 | [ |
Co3O4基材料 | MgCo2O4(尖晶石) | 工作温度高但再氧化反应完成度和动力学性能较差 | [ |
Mn2O3基材料 | Cu掺杂 | 与氧化锰相比反应温度高,还原和再氧化之间的温差减少41K(热滞后)但还原反应动力学缓慢。 | [ |
Mn2O3基材料 | Fe-Cu共掺杂 | 具有高储能密度、快速再氧化反应动力学和较小的热滞后温差,共掺杂会降低还原动力学,可通过提高加热速率来增强反应速率,20%F-1%Cu和5%Fe-1%Cu掺杂样品在30次氧化还原中具有良好的循环稳定性,但高Fe和Cu掺杂样品易烧结。 | [ |
Mn2O3基材料 | LiMnO2 | 具有高还原焓(165 ± 1kJ/kg)、还原和氧化之间的温差小(热滞后84 ± 2K)且可逆的氧化还原反应超过45次 | [ |
CuO基材料 | Co3O4 | 无熔化问题、氧化和还原反应之间的温差提高、能量密度和工作温度低于纯氧化铜 | [ |
CuO基材料 | Cr2O3 | 反应温度(约为1313K)接近氧化铜的熔点,且反应不可逆 | [ |
BaO基材料 | NiO、TiO2、Fe2O3、SnO、ZnO、BaTiO3或BaCuOx | 纯氧化钡的化学稳定性和氧化还原性能没有改善 | [ |
Fe2O3基材料 | 添加Co3O4 | 反应温度降低,反应焓降低,储能密度下降(5%含量的Co添加物使反应焓由599 J/g降至295.9 J/g) | [ |
Al2O3基材料 | 添加Mn2O3 | 不存在氧化还原反应、缓慢的再氧化反应 | [ |
1 | 袁晓辉. 人类世时代的生态危机与生态文明建设探析 [J]. 西部学刊, 2024, (24): 49-52. DOI:10.16721/j.cnki.cn61-1487/c.2024.24.006. |
YUAN Xiaohui. Ecological Crisis and Ecological Civilization Construction in Anthropocene Era [ J ].West Journal, 2024, ( 24 ) : 49-52. DOI : 10.16721 / j.cnki.cn61-1487 / c.2024.24.006. | |
2 | 折晓会,王星宇,郭晓龙,等.超低温-高温跨温区相变材料制备及物性调控综述[J].储能科学与技术,2023,12(12):3818-3835.DOI:10.19799/j.cn ki.2095-4 239.20 23.0 726 . |
SHE Xiaohui, WANG Xingyu, GUO Xiaolong, et al. Review of preparation and physical property regulation of phase change materials in ultra-low temperature-high temperature cross-temperature region [ J ].Energy Storage Science and Technology, 2023,12 ( 12 ) : 3818-3835.DOI : 10.19799 / j.cnki.2095-4239.2023.0726. | |
3 | 潘亚楠.地埋管管群多周期跨季节储/释能间歇运行数值模拟研究[D].内蒙古科技大学,2024.DOI:10.27724/d.cnki.gnmgk.2024.000151. |
PAN Yanan. Numerical simulation of multi-period cross-seasonal energy storage / release intermittent operation of buried pipe group [ D ].Inner Mongolia University of Science and Technology, 2024.DOI : 10.27724 / d.cnki.gnmgk.2024.000151. | |
4 | 凌祥,刘向雷.«热化学储能»专刊——主编寄语[J].储能科学与技术,2024,13(12):4240. |
LING Xiang, LIU Xianglei. " Thermochemical Energy Storage " Special Issue-Editor 's Message [ J ]. Energy Storage Science and Technology, 2024,13 ( 12 ) : 4240. | |
5 | CHANG X L, YAN T, WANG Z, et al. State of the art on solid–gas sorption based long-term thermochemical energy storage[J]. Chemical Engineering Science, 2024: 120853. |
6 | FU H, LAN Y, LING Z, et al. Review on development of magnesium sulfate heptahydrate for thermochemical storage and application[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1956. |
7 | JOHAR D K, SHARMA D, SONI S L. Comparative studies on micro cogeneration, micro cogeneration with thermal energy storage and micro trigeneration with thermal energy storage system using same power plant[J]. Energy Conversion and Management, 2020, 220: 113082. |
8 | YAN X, WANG X, XIA W, et al. Screening of organic lithium precursors for producing high-performance Li4SiO4-based thermochemical energy storage materials: Experimental and kinetic investigations[J]. Journal of Energy Storage, 2024, 85: 111098. |
9 | PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. |
10 | YAN T,WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31. |
11 | PRASAD J S, MUTHUKUMAR P, DESAI F, et al. A critical review of high-temperature reversible thermochemical energy storage systems[J]. Applied Energy, 2019, 254: 113733. |
12 | HU Q, JIANG Y, WANG Z. Calcium-based composite materials for thermochemical heat storage: structure, performance and mechanisms[J]. Journal of Alloys and Compounds, 2024: 177960. |
13 | BAYON A, BADER R, JAFARIAN M, et al. Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications[J]. Energy, 2018, 149: 473-484. |
14 | BAGHERISERESHKI E, TRAN J, LEI F, et al. Investigation into SrO/SrCO3 for high temperature thermochemical energy storage[J]. Solar Energy, 2018, 160: 85-93. |
15 | AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: Testing of cobalt oxide-based powders[J]. Solar Energy, 2014, 102: 189-211. |
16 | Yang H, Wang C, Zhang Y, et al. Experimental investigation of a thermochemical energy storage system based on MgSO4-silica gel for building heating: adsorption/desorption performance testing and system optimization[J]. Energy Conversion and Management, 2024, 301: 118000. |
17 | LI T, WANG R, KIPLAGAT J K, et al. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy[J]. Energy, 2013, 50: 454-467. |
18 | MASTRONARDO E, KATO Y, BONACCORSI L, et al. Thermochemical storage of middle temperature wasted heat by functionalized C/Mg (OH)2 hybrid materials[J]. Energies, 2017, 10(1): 70. |
19 | ZONDAG H A, KIKKERT B W J, SMEDING S, et al. Thermochemical seasonal solar heat storage with MgCl2·6H2O: first upscaling of the reactor[C]//IC-SES Conference. 2011. |
20 | THINSURAT K, MA Z, ROSKILLY A P, et al. Compressor-assisted thermochemical sorption integrated with solar photovoltaic-thermal collector for seasonal solar thermal energy storage[J]. Energy Conversion and Management: X, 2022, 15: 100248. |
21 | LI Z, XU M, HUAI X, et al. Simulation and analysis of thermochemical seasonal solar energy storage for district heating applications in China[J]. International Journal of Energy Research, 2021, 45(5): 7093-7107. |
22 | TESCARI S, SINGH A, AGRAFIOTIS C, et al. Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant[J]. Applied Energy, 2017, 189: 66-75. |
23 | WEI Z, TIEN P W, CALAUTIT J, et al. Investigation of a model predictive control (MPC) strategy for seasonal thermochemical energy storage systems in district heating networks[J]. Applied Energy, 2024, 376: 124164. |
24 | DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied energy, 2017, 199: 45-68. |
25 | ZHANG Y, WANG R. Sorption thermal energy storage: Concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369. |
26 | BÖHM H, LINDORFER J. Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials[J]. Energy, 2019, 179: 1246-1264. |
27 | LI T, WANG R, KIPLAGAT J K. A target‐oriented solid‐gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade[J]. AIChE Journal, 2013, 59(4): 1334-1347. |
28 | WU J, LONG X F. Research progress of solar thermochemical energy storage[J]. International Journal of Energy Research, 2015, 39(7): 869-888. |
29 | CARRILLO A J, SERRANO D P, PIZARRO P, et al. Manganese oxide-based thermochemical energy storage: Modulating temperatures of redox cycles by Fe-Cu co-doping[J]. Journal of Energy Storage, 2016, 5: 169-176. |
30 | WU S, ZHOU C, DOROODCHI E, et al. A review on high-temperature thermochemical energy storage based on metal oxides redox cycle[J]. Energy conversion and management, 2018, 168: 421-453. |
31 | CHEN X, KUBOTA M, KOBAYASHI N, et al. Development of redox-type thermochemical energy storage module: A support-free porous foam made of CuMn2O4/CuMnO2 redox couple[J]. Chemical Engineering Journal, 2024, 485: 149540. |
32 | BHUIYA M M H, KUMAR A, KIM K J. Metal hydrides in engineering systems, processes, and devices: a review of non-storage applications[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2231-2247. |
33 | MELLOULI S, ALQAHTANI T, ALGARNI S, et al. Numerical simulation of a combined thermochemical-latent energy storage system based on paired metal hydrides and phase change material[J]. Journal of Energy Storage, 2024, 86: 111216. |
34 | FELDERHOFF M, BOGDANOVIĆ B. High temperature metal hydrides as heat storage materials for solar and related applications[J]. International journal of molecular sciences, 2009, 10(1): 325-344. |
35 | WANG X H, DU X C, WEI J J. Research progress of different solar thermochemical energy storage systems[J]. Chin. Sci. Bull, 2017, 62: 3631-3642. |
36 | SCHMIDT M, SZCZUKOWSKI C, ROßKOPF C, et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559. |
37 | ERVIN G. Solar heat storage using chemical reactions[J]. Journal of solid state chemistry, 1977, 22(1): 51-61. |
38 | DUNN R, LOVEGROVE K, BURGESS G. A review of ammonia-based thermochemical energy storage for concentrating solar power[J]. Proceedings of the IEEE, 2011, 100(2): 391-400. |
39 | DENG Z, HU T, TIAN J, et al. Performance of a novel single-tubular ammonia-based reactor driven by concentrated solar power[J]. Solar Energy, 2020, 204: 696-707. |
40 | 汪德良, 张纯, 杨玉, 等. 基于太阳能光热发电的热化学储能体系研究进展[J]. 热力发电, 2019, 48(7): 1-9. |
WANG Deliang, ZHANG Chun, YANG Yu, et al. Research progress of thermochemical energy storage system based on solar photothermal power generation[J].Thermal Power Generation, 2019, 48 ( 7 ) : 1-9. | |
41 | KYAW K, SHIBATA T, WATANABE F, et al. Applicability of zeolite for CO2 storage in a CaO-CO2 high temperature energy storage system[J]. Energy conversion and management, 1997, 38(10-13): 1025-1033. |
42 | KATO Y, WATANABE Y, YOSHIZAWA Y. Application of inorganic oxide/carbon dioxide reaction system to a chemical heat pump[C]//IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. IEEE, 1996, 2: 763-768. |
43 | GOKON N, INUTA S, YAMASHITA S, et al. Double-walled reformer tubes using high-temperature thermal storage of molten-salt/MgO composite for solar cavity-type reformer[J]. International Journal of Hydrogen Energy, 2009, 34(17): 7143-7154. |
44 | SHEU E J, MOKHEIMER E M A, GHONIEM A F. A review of solar methane reforming systems[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12929-12955. |
45 | BRADFORD M C J, VANNICE M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity[J]. Applied Catalysis A: General, 1996, 142(1): 73-96. |
46 | PAALO M, YEGIT S S, MOUMANEIX L, et al. Synthesis of zirconium carbide via sol-gel method as a precursor for micro-and mesoporous carbide-derived carbon materials[J]. Carbon Trends, 2025, 19: 100494. |
47 | HROCH J, DOHNALOVÁ Ž, LUXOVÁ J, et al. Synthesis and characterisation of Mn-doped CaTiO3 pigments via the sol–gel method: Effect of substitution steps on the pigmentary properties[J]. Ceramics International, 2024. |
48 | HUANG Y, ZHU P, XU H, et al. Mn-based oxides modified with MnSiO3 for thermochemical energy storage[J]. Chemical Engineering Journal, 2024, 483: 149437. |
49 | CHEN H, ZHANG P, DUAN Y, et al. Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol–gel process[J]. Applied Energy, 2016, 162: 390-400. |
50 | AZIMI B, TAHMASEBPOOR M, SANCHEZ-JIMENEZ P E, et al. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents[J]. Chemical engineering journal, 2019, 358: 679-690.Aarts J, Fischer H, Adan O, et al. Towards stable performance of salt hydrates in thermochemical energy storage: A review[J]. Journal of Energy Storage, 2025, 114: 115726. |
51 | PECHINI M P. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor: U.S. Patent 3,330,697[P]. 1967-7-11. |
52 | CALABRESE L, BRANCATO V, PALOMBA V, et al. Magnesium sulphate-silicone foam composites for thermochemical energy storage: Assessment of dehydration behaviour and mechanical stability[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109992. |
53 | 张皓,杨凡,朱志杰,等.溶胶–凝胶法制备碳化锆纳米粉体[J/OL].中国陶瓷,2025,(05):11-17[2025-05-02].https://doi.org/10.16521/ j.cnki.issn.1001-9642.2025.05.002. |
ZHANG Hao, YANG Fan, ZHU Zhijie, et al. Preparation of zirconium carbide nanopowders by sol-gel method [ J / OL ].China Ceramics, 2025, ( 05 ) : 11-17 [ 2025-05-02 ].https://doi.org/10.16521/ j.cnki.issn.1001-9642.2025.05.002. | |
54 | MEHROTRA R C. Precursors for aerogels[J]. Journal of non-crystalline solids, 1992, 145: 1-10. |
55 | AARTS J, FISCHEr H, ADAN O, et al. Towards stable performance of salt hydrates in thermochemical energy storage: A review[J]. Journal of Energy Storage, 2025, 114: 115726. |
56 | SALVIATI S, CAROSIO F, SARACCO G, et al. Hydrated salt/graphite/polyelectrolyte organic-inorganic hybrids for efficient thermochemical storage[J]. Nanomaterials, 2019, 9(3): 420. |
57 | HU Q, JIANG Y, WANG Z. Calcium-based composite materials for thermochemical heat storage: structure, performance and mechanisms[J]. Journal of Alloys and Compounds, 2024: 177960. |
58 | AFFLERBACH S, AFFLERBACH K, TRETTIN R, et al. Improvement of a semipermeable shell for encapsulation of calcium hydroxide for thermochemical heat storage solutions: Material design and evaluation in laboratory and reactor scale[J]. Solar Energy, 2021, 217: 208-222. |
59 | MANOVIC V, WU Y, HE I, et al. Core-in-shell CaO/CuO-based composite for CO2 capture[J]. Industrial & engineering chemistry research, 2011, 50(22): 12384-12391. |
60 | VAN RAVENSTEIJN B G P, DONKERS P A J, RULIAMAN R C, et al. Encapsulation of salt hydrates by polymer coatings for low-temperature heat storage applications[J]. ACS Applied Polymer Materials, 2021, 3(4): 1712-1726. |
61 | ELAHI B, SALEHZADEH D, DE VOS W M, et al. Boosting stability of K2CO3 granules for thermochemical heat storage applications through innovative membrane encapsulation[J]. Chemical Engineering Journal, 2024, 500: 157042. |
62 | SHIZUME K, HATADA N, TOYOURA K, et al. Characteristic microstructure underlying the fast hydration–dehydration reaction of β-La2(SO4)3:"fine platy joints" with "loose grain boundaries"[J]. Journal of Materials Chemistry A, 2018, 6(48): 24956-24964. |
63 | CHIZHIK S, MATVIENKO A, SIDELNIKOV A. Spatially-ordered nano-sized crystallites formed by dehydration-induced single crystal cracking of CuCl2·2(H2O)[J]. CrystEngComm, 2018, 20(39): 6005-6017. |
64 | CALABRESE L, BRANCATO V, PALOMBA V, et al. Magnesium sulphate-silicone foam composites for thermochemical energy storage: Assessment of dehydration behaviour and mechanical stability[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109992. |
65 | SHKATULOV A, JOOSTEN R, FISCHER H, et al. Core-shell encapsulation of salt hydrates into mesoporous silica shells for thermochemical energy storage, ACS Appl. Energy Mater. 3 (2020) 6860–6869[EB/OL]. |
66 | HU Q, JIANG Y, WANG Z. Calcium-based composite materials for thermochemical heat storage: structure, performance and mechanisms[J]. Journal of Alloys and Compounds, 2024: 177960. |
67 | KHOSA A A, XU T, XIA B Q, et al. Technological challenges and industrial applications of CaCO3/CaO based thermal energy storage system–A review[J]. Solar Energy, 2019, 193: 618-636. |
68 | CHEN Y, LONG Y, SUN J, et al. Core-in-shell, cellulose-templated CaO-based sorbent pellets for CO2 capture at elevated temperatures[J]. Energy & Fuels, 2021, 35(16): 13215-13223. |
69 | JIN D, YU X, YUE L, et al. Decomposition kinetics study of AlOOH coated calcium carbonate[J]. Materials Chemistry and Physics, 2009, 115(1): 418-422. |
70 | GHARSALLAOUI A, ROUDAUT G, CHAMBIN O, et al. Applications of spray-drying in microencapsulation of food ingredients: An overview[J]. Food research international, 2007, 40(9): 1107-1121. |
71 | BARSK A, YAZDANI M R, KANKKUNEN A, et al. Exceptionally high energy storage density for seasonal thermochemical energy storage by encapsulation of calcium chloride into hydrophobic nanosilica capsules[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112154. |
72 | DAWSON R, STEVENS L A, WILLIAMS O S A, et al. 'Dry bases': carbon dioxide capture using alkaline dry water[J]. Energy & Environmental Science, 2014, 7(5): 1786-1791. |
73 | SHKATULOV A I, HOUBEN J, FISCHER H, et al. Stabilization of K2CO3 in vermiculite for thermochemical energy storage[J]. Renewable Energy, 2020, 150: 990-1000. |
74 | COURBON E, D'ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. |
75 | COURBON E, D'ANS P, PERMYAKOVA A, et al. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied energy, 2017, 190: 1184-1194. |
76 | CHEN Y, LI Z, LUO C, et al. Preparation and Performance of Tubular Carbon-Based Carbonate Composites for Thermochemical Energy Storage[J]. Energy, 2025: 134826. |
77 | XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. |
78 | WANG K, GU F, CLOUGH P T, et al. Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants[J]. Chemical Engineering Journal, 2020, 390: 124163. |
79 | OUYANG L Z, YANG X S, ZHU M, et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2. 73 and Ni in CeH2.73-MgH2-Ni nanocomposites[J]. The Journal of Physical Chemistry C, 2014, 118(15): 7808-7820. |
80 | ZHENG H, SONG C, BAO C, et al. Dark calcium carbonate particles for simultaneous full-spectrum solar thermal conversion and large-capacity thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 207: 110364. |
81 | ROßKOPF C, AFFLERBACH S, SCHMIDT M, et al. Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage[J]. Energy Conversion and Management, 2015, 97: 94-102. |
82 | XU Y, LU B, LUO C, et al. Na2CO3 promoted CaO-based heat carrier for thermochemical energy storage in concentrated solar power plants[J]. Chemical Engineering Journal, 2022, 435: 134852. |
83 | YAN J, ZHAO C Y. First-principle study of CaO/Ca(OH)2 thermochemical energy storage system by Li or Mg cation doping[J]. Chemical Engineering Science, 2014, 117: 293-300. |
84 | LIU L, ZHOU Z, CAO X E, et al. Screening of optimal dopants on cobalt-based ceramics for high-temperature thermochemical energy storage[J]. Ceramics International, 2023, 49(2): 2329-2339. |
85 | TORTOZA M S, HUMPHRIES T D, SHEPPARD D A, et al. Thermodynamics and performance of the Mg–H–F system for thermochemical energy storage applications[J]. Physical Chemistry Chemical Physics, 2018, 20(4): 2274-2283. |
86 | PITT M P, PASKEVICIUS M, WEBB C J, et al. The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2+ 0.01 Nb2O5 benchmark[J]. international journal of hydrogen energy, 2012, 37(5): 4227-4237. |
87 | CALABRESE L, BRANCATO V, PALOMBA V, et al. Assessment of the hydration/dehydration behaviour of MgSO4∙7H2O filled cellular foams for sorption storage applications through morphological and thermo-gravimetric analyses[J]. Sustainable Materials and Technologies, 2018, 17: e00073. |
88 | SAKELLARIOU K G, KARAGIANNAKIS G, CRIADO Y A, et al. Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants[J]. Solar Energy, 2015, 122: 215-230. |
89 | DENG J, GU C, XU H, et al. Self-assembly CuO surface decorated with NiAl2O4 for high-temperature thermochemical energy storage: Excellent performance and strong interaction mechanism[J]. Journal of Energy Storage, 2023, 59: 106370. |
90 | JEREMIAS F, LOZAN V, HENNINGER S K, et al. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications[J]. Dalton transactions, 2013, 42(45): 15967-15973. |
91 | PERMYAKOVA A. Metal Organic Frameworks based materials for long term solar energy storage application[D]. Université Paris Saclay (COmUE); Université de Mons, 2016. |
92 | FU R, HUANG J, FENG Q, et al. Synthesis of dark Li4- 3xFexSiO4 for simultaneous direct solar thermal conversion and durable thermochemical energy storage[J]. Journal of Energy Storage, 2023, 73: 109053. |
93 | DIZAJI H B, HOSSEINI H. A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 9-26. |
94 | ANDRÉ L, ABANADES S, CASSAYRE L. High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides[J]. Journal of Solid State Chemistry, 2017, 253: 6-14. |
95 | BLOCK T, SCHMÜCKER M. Metal oxides for thermochemical energy storage: A comparison of several metal oxide systems[J]. Solar Energy, 2016, 126: 195-207. |
96 | PAGKOURA C, KARAGIANNAKIS G, ZYGOGIANNI A, et al. Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants[J]. Solar Energy, 2014, 108: 146-163. |
97 | KARAGIANNAKIS G, PAGKOURA C, HALEVAS E, et al. Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: Multi-cyclic assessment and semi-quantitative heat effects estimations[J]. Solar Energy, 2016, 133: 394-407. |
98 | WONG B. Thermochemical Heat Storage for Concentrated Solar Power: Thermochemical System Reactor Design for Thermal Energy Storage: Phase II Final Report for the Period September 30, 2008 through April 30, 2011[J]. US Department of Energy: Washington, DC, USA, 2011. |
99 | AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: Testing of cobalt oxide-based powders[J]. Solar Energy, 2014, 102: 189-211. |
100 | CARRILLO A J, SERRANO D P, PIZARRO P, et al. Design of efficient Mn-based redox materials for thermochemical heat storage at high temperatures[C]//AIP Conference Proceedings. AIP Publishing, 2016, 1734(1). |
101 | CARRILLO A J, SERRANO D P, PIZARRO P, et al. Manganese oxide-based thermochemical energy storage: Modulating temperatures of redox cycles by Fe-Cu co-doping[J]. Journal of Energy Storage, 2016, 5: 169-176. |
102 | CARRILLO A J, SERRANO D P, PIZARRO P, et al. Thermochemical heat storage at high temperatures using Mn2O3/Mn3O4 system: narrowing the redox hysteresis by metal co-doping[J]. Energy Procedia, 2015, 73: 263-271. |
103 | VARSANO F, ALVANI C, LA BARBERA A, et al. Lithium manganese oxides as high-temperature thermal energy storage system[J]. Thermochimica Acta, 2016, 640: 26-35. |
104 | JACOB K T, KALE G M, IYENGAR G N K. Oxygen potentials, Gibbs' energies and phase relations in the Cu-Cr-O system[J]. Journal of materials science, 1986, 21: 2753-2758. |
105 | BLOCK T, KNOBLAUCH N, SCHMÜCKER M. The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material[J]. Thermochimica Acta, 2014, 577: 25-32. |
106 | WANG P, GUO Y, ZHOU D, et al. High‐temperature flexible nanocomposites with ultra‐high energy storage density by nanostructured MgO fillers[J]. Advanced Functional Materials, 2022, 32(31): 2204155. |
107 | 岳一莹,潘红阳,蒋剑春.纳米纤维素/还原氧化石墨烯光催化气凝胶的制备及其吸附降解罗丹明B[J].生物质化学工程,2024,58(02):1-12. |
YUE Yiying, PAN Hongyang, JIANG Jianchun. Preparation of nanocellulose / reduced graphene oxide photocatalytic aerogel and its adsorption and degradation of rhodamine B [ J ].Biomass Chemical Engineeringl, 2024,58 ( 02 ) : 1-12. | |
108 | XU M, HUAI X, CAI J. Agglomeration behavior of calcium hydroxide/calcium oxide as thermochemical heat storage material: a reactive molecular dynamics study[J]. The Journal of Physical Chemistry C, 2017, 121(5): 3025-3033. |
109 | 林艳红, 王德军, 肇启东, 等.ZnO纳米粒子结构对光电量子限域特性的影响[J]. 高等学校化学学报, 2003, 24(11): 2077-2079. |
LIN Yanhong, WANG Dejun, ZHAO Qidong, et al. [ 92 ].Effect of ZnO nanoparticle structure on photoelectric quantum confinement characteristics [ J ].Chemical Journal of ChineseUniversities, 2003,24 ( 11 ) : 2077-2079. | |
110 | ZAHIR M H, RAHMAN M M, BASAMAD S K S, et al. Preparation of a Sustainable Shape-Stabilized Phase Change Material for Thermal Energy Storage Based on Mg2+-Doped CaCO3/PEG Composites[J]. Nanomaterials, 2021, 11(7): 1639. |
111 | JIANG L, YAN J, TIAN X K, et al. Thermochemical heat storage and material behavior of calcium hydroxide fine powder in a fluidized bed reactor[J]. Energy, 2024, 312: 133691. |
112 | KIM Y, DONG X, CHAE S, et al. Ultrahigh‐porosity MgO microparticles for heat‐energy storage[J]. Advanced Materials, 2023, 35(43): 2204775. |
113 | JIANG L, ZHOU H, YANG H, et al. Applications of hierarchical metal–organic frameworks and their derivatives in electrochemical energy storage and conversion[J]. Journal of Energy Storage, 2022, 55: 105354. |
114 | ZHAO M, SHI J, ZHONG X, et al. A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture[J]. Energy & Environmental Science, 2014, 7(10): 3291-3295. |
115 | TIAN Z, ZHANG J, ZHANG Y, et al. Thermochemical heat storage performance of Fe-doped MgO/Mg(OH)2: Experimental and DFT investigation[J]. Journal of Energy Storage, 2024, 86: 111388. |
116 | WARD P A, CORGNALE C, TEPROVICH J A, et al. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems[J]. Applied Physics A, 2016, 122: 1-10. |
117 | MISTRY P C, GRANT D M, STUART A D, et al. Evolution of catalyst coated atomised magnesium spheres–An alternative thermal storage medium for concentrated solar power applications[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28453-28463. |
118 | AFFLERBACH S, KAPPES M, GIPPERICH A, et al. Semipermeable encapsulation of calcium hydroxide for thermochemical heat storage solutions[J]. Solar Energy, 2017, 148: 1-11. |
119 | COT-GORES J, CASTELL A, CABEZA L F. Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5207-5224. |
120 | YANG H, WANG C, ZHANG Y, et al. Experimental investigation of a thermochemical energy storage system based on MgSO4-silica gel for building heating: adsorption/desorption performance testing and system optimization[J]. Energy Conversion and Management, 2024, 301: 118000. |
121 | YANG H, WANG C, TONG L, et al. Investigation of thermochemical energy storage materials for building heating applications: Desorption behaviors of MgSO4·7H2O–silica gel composite[J]. Chemical Engineering Journal, 2024, 502: 157859. |
122 | WEI S, ZHOU W, HAN R, et al. Influence of minerals with different porous structures on thermochemical heat storage performance of CaCl2-based composite sorbents[J]. Solar Energy Materials and Solar Cells, 2022, 243: 111769. |
123 | 吴桐.二元锰铁热化学储热材料团聚调控机制及模块循环性能优化[D].浙江大学,2024.DOI:10.27461/d.cnki.gzjdx.2024.000013. |
WU Tong. Aggregation regulation mechanism and module cycle performance optimization of binary ferromanganese thermochemical heat storage materials [ D ].Zhejiang University, 2024.DOI : 10.27461 / d.cnki.gzjdx.2024.000013. | |
124 | XU Y, ZHANG T, LU B, et al. Glycine tailored effective CaO-based heat carriers for thermochemical energy storage in concentrated solar power plants[J]. Energy Conversion and Management, 2021, 250: 114886. |
125 | LIU H, NAGANO K, TOGAWA J. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J]. Solar Energy, 2015, 111: 186-200. |
126 | WANG Z, TAO S, DENG J, et al. Significant improvement in the dehydriding properties of perovskite hydrides, NaMgH3, by doping with K2TiF6[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8554-8559. |
127 | POSERN K, KAPS C. Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2[J]. Thermochimica Acta, 2010, 502(1-2): 73-76. |
128 | AIT OUSALEH H, SAIR S, MANSOURI S, et al. New hybrid graphene/inorganic salt composites for thermochemical energy storage: synthesis, cyclability investigation and heat exchanger metal corrosion protection performance[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110601. |
129 | ANDRÉ L, ABANADES S. Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage[J]. Journal of Energy Storage, 2017, 13: 193-205. |
130 | TIAN X, GUO S, LV X, et al. Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems[J]. Progress in Energy and Combustion Science, 2025, 106: 101194. |
131 | SARRION B, VALVERDE J M, PEREJON A, et al. On the multicycle activity of natural limestone/dolomite for thermochemical energy storage of concentrated solar power[J]. Energy Technology, 2016, 4(8): 1013-1019. |
132 | VALVERDE J M, BAREA-LOPEZ M, PEREJON A, et al. Effect of thermal pretreatment and nanosilica addition on limestone performance at calcium-looping conditions for thermochemical energy storage of concentrated solar power[J]. Energy & Fuels, 2017, 31(4): 4226-4236. |
133 | RAGANATI F, CHIRONE R, AMMENDOLA P. Calcium-looping for thermochemical energy storage in concentrating solar power applications: Evaluation of the effect of acoustic perturbation on the fluidized bed carbonation[J]. Chemical Engineering Journal, 2020, 392: 123658. |
134 | RAGANATI F, AMMENDOLA P. Sound-assisted fluidization for temperature swing adsorption and calcium looping: A review[J]. Materials, 2021, 14(3): 672. |
[1] | 倪心怡, 徐晓萌, 曹逻炜, 李乐, 姚雪佳, 贾国栋. 带非均质盐膜多层异质结构吸热管超声导波传播特性仿真研究[J]. 储能科学与技术, 2025, 14(3): 1168-1176. |
[2] | 李永奇, 杜蕴, 方振华, 张松通, 祝夏雨, 胡海良, 邱景义, 明海. 军用新能源微电网系统的运维及故障处置分析[J]. 储能科学与技术, 2024, 13(8): 2740-2757. |
[3] | 王洪明, 程勃. 相变蓄热型空气源热泵系统与太阳能互补供暖系统的优化研究[J]. 储能科学与技术, 2024, 13(6): 1980-1982. |
[4] | 艾雄杰, 袁俊, 吕伟中, 万力. 基于相变储热的集成式太阳能集热器研究进展[J]. 储能科学与技术, 2024, 13(12): 4409-4420. |
[5] | 徐书彧, 王燕. 基于MgSO4 的热化学储能特性数值研究[J]. 储能科学与技术, 2024, 13(12): 4299-4309. |
[6] | 丁扬, 王翰文, 陆文杰, 罗元俊, 凌祥. 基于热泵储电的绝热钙循环卡诺电池系统特性及优化研究[J]. 储能科学与技术, 2024, 13(12): 4247-4258. |
[7] | 王梦茹, 孙希瑞, 张浩煜, 陈健, 李友势. 支撑体改性对钙铜复合材料热化学储能特性的影响[J]. 储能科学与技术, 2024, 13(12): 4290-4298. |
[8] | 马鸿坤, 纪明希, 丁玉龙. 中低温吸附式热化学储热研究现状与进展[J]. 储能科学与技术, 2024, 13(12): 4436-4451. |
[9] | 李晓丽. 基于非线性互补算法的太阳能电池储能系统设计与网络建模[J]. 储能科学与技术, 2024, 13(1): 339-341. |
[10] | 张亚磊, 崔海亭, 王晨, 陈浩松, 王超. 基于低谷电的太阳能-地源热泵相变蓄热供暖系统研究[J]. 储能科学与技术, 2023, 12(12): 3789-3798. |
[11] | 张岩岩, 熊亚选, 陈亚辉, 全瑞星, 程广贵, 赵彦琦, 丁玉龙. 相变填充床储热系统研究与应用进展[J]. 储能科学与技术, 2023, 12(12): 3852-3872. |
[12] | 尹航, 王强, 朱佳华, 廖志荣, 张子楠, 徐二树, 徐超. 耦合光热发电储热-有机朗肯循环的先进绝热压缩空气储能系统热力学分析[J]. 储能科学与技术, 2023, 12(12): 3749-3760. |
[13] | 田曦, 熊亚选, 任静, 赵彦琦, 晋世豪, 李烁, 杨洋, 丁玉龙. 碳捕捉对废弃混凝土复合相变储热材料性能的影响[J]. 储能科学与技术, 2023, 12(12): 3709-3719. |
[14] | 杨洋, 熊亚选, 任静, 赵彦琦, 李烁, 田曦, 丁玉龙. 碳捕捉对电石渣-钢渣复合相变储热材料性能的影响[J]. 储能科学与技术, 2023, 12(12): 3690-3698. |
[15] | 张志浩, 靳晓刚, 包恒兴, 凌祥. 混合加热反应器内Ca(OH)2/CaO热化学储能体系实验[J]. 储能科学与技术, 2023, 12(1): 227-235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||