储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 2950-2959.doi: 10.19799/j.cnki.2095-4239.2025.0478

• 短时高频高功率储能专辑 • 上一篇    

基于纳/微结构钴酸锂颗粒级配正极的超高功率锂离子电池

班宵汉1,2(), 周明霞1, 胡洪瑞1, 刘富亮1,2, 马东伟1, 石斌1(), 张校刚2()   

  1. 1.贵州梅岭电源有限公司,特种化学电源全国重点实验室,贵州 遵义 563000
    2.南京航空航天大学材料科学与技术学院,江苏 南京 210000
  • 收稿日期:2025-05-21 修回日期:2025-06-09 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 石斌,张校刚 E-mail:banxiaohan123@163.com;583239570@qq.com;azhangxg@nuaa.edu.cn
  • 作者简介:班宵汉(1993—),男,硕士研究生,工程师,研究方向为电化学储能技术,E-mail:banxiaohan123@163.com
  • 基金资助:
    贵州省科技计划(黔科合中引地[2024]008);贵州省科技计划(黔科合平台人才-CXTD[2023]026)

Ultrahigh-power lithium-ion batteries based on nano/micro-structured LiCoO2 graded-particle cathode design

Xiaohan BAN1,2(), Mingxia ZHOU1, Hongrui HU1, Fuliang LIU1,2, Dongwei MA1, Bin SHI1(), Xiaogang ZHANG2()   

  1. 1.Guizhou Meiling Power Sources Co. , Ltd. , State Key Laboratory of Advanced Chemical Power Sources, Zunyi 563000, Guizhou, China
    2.School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, Jiangsu, China
  • Received:2025-05-21 Revised:2025-06-09 Online:2025-08-28 Published:2025-08-18
  • Contact: Bin SHI, Xiaogang ZHANG E-mail:banxiaohan123@163.com;583239570@qq.com;azhangxg@nuaa.edu.cn

摘要:

纳米颗粒材料在增强快速充放电能力、优化功率密度等方面比微米粒子具有显著优势,但是其也存在首次库仑效率低、体积能量密度低、负载量低、循环稳定性差、制造过程复杂和成本高等缺点,限制了其应用。本工作采用简单湿法球磨工艺制备了纳米级钴酸锂材料(N-LCO),并将其与微米级钴酸锂(M-LCO)进行颗粒级配,分析不同纳米级颗粒质量分数对颗粒级配材料(x%N-LCO)电化学性能的影响。借助X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学技术等表征测试手段,对比分析M-LCO和x%N-LCO材料的结构、形貌和电化学性能。结果表明,10%N-LCO颗粒级配材料具有较高的首次放电比容量(170.1 mAh/g)和首次库仑效率(93.83%),10 C倍率放电容量保持率达79.30%,1 C充放电循环100周容量保持率为96.33%,循环性能优异。以10%N-LCO颗粒级配材料与商业化硬碳材料分别作为正负极活性材料组装的1.4 Ah软包锂离子电池,具有116.78 Wh/kg的比能量,200 C倍率放电容量保持率达78.57%,并且可以承受350 C倍率秒级和1000 C倍率毫秒级脉冲放电,1000 C倍率脉冲放电功率密度达88.44 kW/kg。本工作通过纳/微结构钴酸锂的颗粒级配实现了正极材料倍率性能极大提升,为短时高频高功率锂离子电池的设计和工程化研究提供指导。

关键词: 超高功率密度, 高能量密度, 纳米级电极材料, 微米级电极材料, 颗粒级配

Abstract:

While nano-sized materials offer notable advantages over micron-sized particles in enhancing rapid charge-discharge capability and optimizing power density, they suffer from several limitations, including low initial Coulombic efficiency, low volumetric energy density, insufficient mass loading, inferior cycling stability, complex manufacturing processes, and high production costs, collectively restricting their practical applications. In this study, nano-scale LiCoO2 (N-LCO) was synthesized via a facile wet ball-milling method and subsequently combined with micron-scale LiCoO2 (M-LCO) to form particle-graded composites. The effects of varying mass ratios of nano-sized particles (x% N-LCO) on the electrochemical performance were systematically investigated. Through X-ray diffraction, scanning electron microscopy, and electrochemical characterization, a comparative analysis of the structure, morphology, and electrochemical properties of M-LCO and x% N-LCO materials was conducted. The results demonstrate that the 10% N-LCO composite exhibits outstanding electrochemical properties: a high initial discharge specific capacity (170.1 mAh/g) with an initial Coulombic efficiency of 93.83%, remarkable rate capability (79.3% capacity retention at 10 C), and excellent cycling stability (96.33% capacity retention after 100 cycles at 1 C). A 1.4 Ah pouch-type lithium-ion battery assembled with the 10% N-LCO composite cathode and commercial hard carbon anode achieved a specific energy of 116.78 Wh/kg. The battery maintained 78.57% capacity retention at a 200 C discharge rate and sustained ultra-high pulse discharges at 350 C (second-level) and 1000 C (millisecond-level). Notably, a power density of 88.44 kW/kg was achieved during 1000 C pulse discharge. This work significantly enhances the rate capability of cathode materials through nano/microstructural particle grading of LiCoO2, offering valuable insights into the design and engineering of short-duration, high-frequency, and ultrahigh-power lithium-ion batteries.

Key words: ultra-high power density, high energy density, nanoscale electrode materials, micron-scale electrode materials, particle size gradation

中图分类号: