• XXXX •
姚昊天1(), 董珊芝1, 郝杨2, 邵勤思1, 刘杨1(
), 赵玉峰1, 张久俊1,3
收稿日期:
2025-07-24
修回日期:
2025-08-25
通讯作者:
刘杨
E-mail:yht844676278@shu.edu.cn;yangliu45@shu.edu.cn
作者简介:
姚昊天(2000—),男,硕士研究生,从事燃料电池研究,E-mail:yht844676278@shu.edu.cn;
基金资助:
Haotian YAO1(), Shanzhi DONG1, Yang HAO2, Qinsi SHAO1, Yang LIU1(
), Yufeng ZHAO1, Jiujun ZHANG1,3
Received:
2025-07-24
Revised:
2025-08-25
Contact:
Yang LIU
E-mail:yht844676278@shu.edu.cn;yangliu45@shu.edu.cn
摘要:
固体氧化物电解池(SOEC)作为新一代高温电化学能量转换装置,通过固体氧化物电解质的氧离子传导特性,实现了电能向化学能的高效转化,在分布式储能和可再生能源领域展现出巨大的价值。其核心优势在于:SOEC可与光伏或光热系统高效耦合,实现间歇性电能向可储运氢能的灵活转化。此外,SOEC具备CO2/H2O共电解功能,能够通过化学链转化过程,将温室气体高效转化为甲醇、甲烷等清洁燃料,进而构建“电-氢-化学品”的级联式资源利用体系。本文系统讲述了SOEC的热力学基础与构造特征,重点分析了燃料电极、氧电极及电解质的研究进展,并分析了目前SOEC所面临的问题,总结归纳电极材料、电池结构以及流场和热管理等改进策略。同时,本文基于目前研究进展,对SOEC在高温共电解等方向的发展路径及其在构建低碳能源体系所能发挥的作用进行了展望。
中图分类号:
姚昊天, 董珊芝, 郝杨, 邵勤思, 刘杨, 赵玉峰, 张久俊. 固体氧化物电解池材料和结构优化的研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0680.
Haotian YAO, Shanzhi DONG, Yang HAO, Qinsi SHAO, Yang LIU, Yufeng ZHAO, Jiujun ZHANG. Research progress on material and structural optimization of solid oxide electrolyzer cells[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0680.
表1
各种电解水制氢的技术对比[5-10]"
项目 | 碱性电解水(ALK) | 质子交换膜(PEM) | 阴离子交换膜(AEM) | 固体氧化物电解池(SOEC) |
---|---|---|---|---|
电解质 | 20%~30% KOH/NaOH | 固体聚合物电解质(SPE) | 含1mol·L-1 KOH/NaOH二乙烯基苯(DVB)聚合物 | 氧化钇稳定的氧化锆(YSZ) |
电流密度/A·cm-2 | 0.2-0.5 | 1.0-3.0 | 0.8-2.5 | 0.3-2.0 |
电压/V | 1.4-3.0 | 1.4-2.5 | 1.4-2.0 | 1.0-1.5 |
工作温度/℃ | 70~90 | 50~90 | 50~90 | 700~850 |
阴极催化剂 | Ni | Pt/C | Ni | Ni/YSZ |
阳极催化剂 | Ni | IrO2 | Ni/NiFeCo | LSM/LSCF |
电解效率 | 59~70% | 65~82% | 60~75% | 85~100% |
能耗率(标准条件,kW·h·m-3) | 4.2-5.9 | 4.2-4.6 | 4.2-4.6 | >3 |
环保性 | 碱液、石棉隔膜污染 | 无污染 | 无污染 | 无污染 |
启停速度 | 启动时间长 | 秒级相应 | 分钟级相应 | 启动时间长 |
优势 | 技术成熟,成本低,适合大规模制氢项目 | 效率高,氢气纯度高(>99.99%),适合车规级氢能及加氢站场景 | 成本低(非贵金属催化剂),潜在效率高,结合ALK的经济性和PEM的灵活性 | 理论效率最高,余热利用可提升系统效率至85%以上,可逆运行(氢储能) |
不足 | 效率较低,废液处理成本,不适合波动性电源 | 贵金属依赖导致成本高,膜电极寿命需提升 | 膜和电极材料耐久性不足,技术未成熟,商业化进程缓慢 | 商业化程度低 |
表2
常见氧电极材料的电化学性能的比较"
电池/电解池氧电极材料 | 燃料 | 温度/℃ | 电压/V | 电流密度/(A·cm-2) | 稳定性 | 文献 |
---|---|---|---|---|---|---|
LSCF-GDC@YSZ | 90%CO2-10%CO | 800 | 1.5 | 1.26 | 220 h(800 ℃、-0.20 A·cm-2) | [ |
PBCFN-SDC | 3%H2O-97% H2 | 850 | 1.3 | 0.65 | 10 h(850℃、1.3V) | [ |
LSM/LSM-YSZ | 60%H2O-40%CO2 | 750 | 1.0 | 2.0 | 256 h(750℃、1V) | [ |
BCCF | 20%H2O | 650 | 1.3 | 2.73 | 100 h(650℃、 0.3 A·cm-2) | [ |
LSGM/SSZ | 50%H2O-50%H2 | 800 | 1.3 | 1.15 | 100 h(在1023 K和10%H2O-90%H2时,SOFC模式1.2 V和SOEC模式0.85 V之间循环运行 | [ |
PBCO-1.5 | CO2 | 800 | 1.6 | 2.29 | 600 h | [ |
BLF-GDC | 50%H2-50% H2O | 800 | 1.5 | 2.42 | 200 h(2.30 A·cm-2、800℃ 40%H2O-10%CO2-50%H2) | [ |
50%H2-50%CO2 | 800 | 1.5 | 1.53 | |||
40%H2O-10% CO2-50% H2 | 800 | 1.5 | 2.08 | |||
PNCO-LSC | 90%空气-8%CO2-2%H2 | 800 | 1.5 | 0.917 | 100 h(800℃和0.4 A·cm-2) | [ |
PBC | CO2 | 800 | 2.0 | 3.40 | 200 h(1.2 V) | [ |
PBSCF@BZCYYb | 20%H2O-80%空气 | 650 | 1.3 | 0.7754 | 60 h | [ |
RP-LSCFNMC | 60%H2O | 800 | 1.3 | 2.10 | 120 h(750℃、1.3V、60%H2O) | [ |
LCFC | 50%H2O-50%H2 | 800 | 1.5 | 2.89 | 140 h(SOFC和SOEC模式运行) | [ |
CCO-1.5 | 50%H2O、H2和Ar混合气 | 800 | 1.5 | 2.451 | 100 h | [ |
CCO-3 | 800 | 1.5 | 1.101 | - |
表3
常见燃料电极材料的电化学性能的比较"
电池/电解池燃料电极材料 | 燃料 | 温度/℃ | 电压/V | 电流密度/(A·cm-2) | 稳定性 | 文献 |
---|---|---|---|---|---|---|
LSCFF | 50%CO-50%CO2 | 800 | 1.5 | 1.09 | - | [ |
LSCFF95 | 1.28 | 6 h(800℃和 1.6 A·cm-2) | ||||
Ni@SFTCMMN | CO2 | 800 | 1.5 | 1.91 | 160 h(800℃和 1.2 V) | [ |
SFCM | 50%CO2-50%CO | 850 | 1.4 | 2.12 | 20 h(800℃和 0.4 A·cm-2) | [ |
45%CO2-45%H2O-10%H2 | 800 | 1.5 | 2.30 | 50 h(1 A·cm-2) | ||
Pr(Ca)Fe(Ni)O3-Ca2Fe2O5 | CO2 | 800 | 1.5 | 0.76 | 300 h(800℃和 0.3 A·cm-2) | [ |
LSFMCa0.3 | CO2 | 800 | 1.5 | 1.891 | - | [ |
MFCC20 | 55% H2O/Ar | 800 | 1.3 | 0.48 | 150 h(800℃、1.3 V、55% H2O/Ar) | [ |
MFCC5 | 55% H2O/Ar | 800 | 1.3 | 0.60 | ||
LSFM0.05 | CO2 | 800 | 1.5 | 1.06 | 30 h(800℃、 1.2 V ) | [ |
LCF64-GDC (6:4) | 60% H2O/H2 | 850 | 1.3 | 0.702 | 60 h(750℃、60% H2O-H2、1.3V) | [ |
LSFW-GDC | CO2 | 800 | 1.5 | 1.48 | 50 h(800℃和1.2 V) | [ |
LSFTi91 | CO2 | 800 | 1.5 | 1.11 | 10 h(800℃和1.2 V) | [ |
PCFN95 | CO2 | 800 | 1.5 | 1.76 | 100 h(800℃和 0.5 A·cm-2) | [ |
LCTNi-Ce | 50% CO2-50% H2 | 800 | 1.3 | 0.557 | - | [ |
50% CO2-50% CO | 800 | 1.3 | 0.429 | - | ||
R-PB95FN | CO2 | 800 | 1.5 | 1.093 | 100 h(800℃和1.5 V) | [ |
表4
常见的微观孔隙优化的SOFC/SOEC电化学性能比较"
电池/电解池 | 燃料 | 温度/℃ | 电压/V | 电流密度/(A·cm-2) | 孔隙率 | 文献 |
---|---|---|---|---|---|---|
NiO-YSZ//YSZ//GDC/BSCF-GDC | 50%H2O | 800 | 1.5 | 4.30 | 60.53%/燃料电极 | [ |
Ni-YSZ//YSZ//YSZ-LSC | - | 800 | - | 3.40 | 27%/氧电极 | [ |
Ni-YSZ/Ni-YSZ//YSZ//GDC/ | 90%H2O- 10%H2 | 750 | 1.3 | 1.86 | 48%/燃料电极 | [ |
Ni-YSZ//YSZ//YSZ-LSM | 50%H2O-50%H2 | 750 | 1.3 | 1.42 | 57.5%/燃料电极 | [ |
Ni-YSZ//GDC/YSZ//LSF-GDC | 50%CO2/ H2 | 800 | 1.7 | 1.91 | 52.3%/氧电极 | [ |
GDC10/GDC10//ScSZ//GDC10/LSM20 | 81% CO2-10% CO-9%N2 | 850 | 1.5 | 0.72 | - | [ |
LSCrF-YSZ//YSZ//LSM-YSZ | CO2 | 800 | 1.5 | 1.02 | - | [ |
NiO-YSZ /NiO-YSZ//YSZ/GDC//LSCF-GDC | 30%CO2-70%CO | 750 | 1.5 | 1.12 | 51%/燃料电极 | [ |
NiO-YSZ/CFL//YSZ/GDC//LSCF-HP | 10%CO2/H2 | 800 | 1.7 | 1.78 | 34.6%/CFL | [ |
NiO-YSZ//YSZ//GDC/SFM-GDC | 3% H2O-air | 800 | 1070 mW·cm-2 | 59.5%/负极 | [ | |
Ni-YSZ//YSZ//LSM-YSZ | 50%H2 | 800 | 253 mW·cm-2 | 46.9%/负极 | [ |
表5
常见 SOEC共电解的电化学性能比较"
电解池 | 燃料 | 温度/℃ | 电压/V | 电流密度/(A·cm-2) | 稳定性 | 文献 |
---|---|---|---|---|---|---|
LSM/LSM-YSZ//YSZ//LSCM | 60%H2O-40%CO2 | 750 | 1.0 | 2.0 | 256 h(750℃、1V) | [ |
Ni-YSZ//YSZ/LSM-YSZ//LSM/LSCF | 10%H2-60% H2O-30%CO2 | 850 | 1.4 | 0.90 | 100 h(0.80 A·cm-2、800℃) | [ |
Ni-YSZ//YSZ/GDC//LSGF-GDC | 40%H2O-40% CO2-20% H2 | 750 | 1.3 | 0.30 | 1000 h | [ |
Ni-YSZ//YSZ/GDC//LSGF-GDC | 60%H2O-25% CO2-10% H2 | 750 | 1.3 | 0.50 | 600 h(0.5 A·cm-2) | [ |
Ni-YSZ/YSZ/CGO//LSCF-CGO | 45%H2O-45% CO2-10% H2 | 750 | 1.4 | 1.20 | 1400 h(前800 h为0.5 A·cm-2 后0.75 A·cm-2) | [ |
SFM//YbScSZ//SFM | 75%H2O-25%CO2 | 900 | 1.3 | 1.10 | 42 h | [ |
SFMFe-LSGM//LSGM//SFM-LSGM | 50%H2O-50%CO2 | 850 | 1.3 | 0.60 | 100 h(850℃、1.1 V) | [ |
SFM-SDC//LSGM//SFM-SDC | 16% CO2-16%H2O-20%H2-48%N2 | 850 | 1.3 | 0.73 | 103 h(800℃、0.12 A·cm-2) | [ |
LSFNi-GDC//LSGM//PBCC-GDC | 20% H2O- 80% CO2 | 850 | 1.5 | 2.42 | 150 h(20% H2O/CO2、 800℃和0.5 A·cm-2) | [ |
SFM-YSZ//YSZ//LSM-YSZ | 20% H2O- 80% CO2 | 800 | 1.5 | 1.46 | 26 h(CO2-20 vol% H2O、1.3 V、800℃) | [ |
LSFNb//LSGM//LSFNb | 20% H2O- 80% CO2 | 850 | 1.3 | 1.46 | 130 h(800℃、CO2-20 vol% H2O、0.48 A·cm-2) | [ |
20% H2O- 80% CO2 | 800 | 1.3 | 0.97 | |||
LSCM//YSZ//LSCM | 50%CO2-50% H2O | 850 | 1.5 | 0.30 | - | [ |
Ni-YSZ//YSZ/CGO//LSCF-CGO | 65% H2O- 25% CO2- 10% H2 | 750 | 1.3 | 1.30 | 1000 h(750℃、0.5 A·cm-2) | [ |
Ni-YSZ/YSZ/LSM-YSZ | 45% H2O-10%H2-45%CO2 | 850 | 1.3 | 1.00 | 700 h(1.5 A·cm2) | [ |
[1] | HAUCH A, KUNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118. |
[2] | WOLF S E, Winterhalder F E, VIBHU V, et al. Solid oxide electrolysis cells-current material development and industrial application[J]. Journal of materials chemistry A, 2023, 11(34): 17977-18028. |
[3] | SCHMIDT O, GAMBHIR A, STAFFELL I, et al. Future cost and performance of water electrolysis: An expert elicitation study[J]. International journal of hydrogen energy, 2017, 42(52): 30470-30492. |
[4] | AFROZE S, SOFR A N S B, REZA M S, et al. Solar-powered water electrolysis using hybrid solid oxide electrolyzer cell (SOEC) for green hydrogen-A review[J]. Energies, 2023, 16(23): 7794. |
[5] | QIU C, XU Z, CHEN F Y, et al. Anode engineering for proton exchange membrane water electrolyzers[J]. ACS Catalysis, 2024, 14(2): 921-954. |
[6] | TÜYSUZ H. Alkaline water electrolysis for green hydrogen production[J]. Accounts of Chemical Research, 2024: 697-710. |
[7] | LAWAND K, SAMPATHKUMAR S N, MURY Z, et al. Membrane electrode assembly simulation of anion exchange membrane water electrolysis[J]. Journal of Power Sources, 2024, 595: 234047. |
[8] | TIAN Y, ABHISHEK N, YANG C, et al. Progress and potential for symmetrical solid oxide electrolysis cells[J]. Matter, 2022, 5(2): 482-514. |
[9] | KUMAR S S, LIM H. An overview of water electrolysis technologies for green hydrogen production[J]. Energy reports, 2022, 8: 13793-13813. |
[10] | 余晖迪,张琳,赵永明,等. 油气行业可再生能源制氢技术进展与前景展望[J]. 石油科技论坛,2024,43(1):40-49. |
[11] | WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058): 935-939. |
[12] | KIM J, JUN A, GWON O, et al. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production[J]. Nano Energy, 2018, 44: 121-126. |
[13] | TUCKER M C. Progress in metal-supported solid oxide fuel cells: A review[J]. Journal of Power Sources, 2010, 195(15): 4570-4582. |
[14] | HAUCH A, EBBESEN S, JENSEN S H, et al. Solid oxide electrolysis cells: microstructure and degradation of the Ni/yttria-stabilized zirconia electrode[J]. Journal of The Electrochemical Society, 2008, 155(11): B1184. |
[15] | HEN M, LIU Y L, HAGEN A, et al. LSM-YSZ reactions in different atmospheres J]. Fuel Cells, 2009, 9(6): 833-840. |
[16] | WANG R, DOGDIBEGOVIC E, LAU G Y, et al. Metal-supported solid oxide electrolysis cell with significantly enhanced catalysis[J]. Energy Technology, 2019, 7(5): 1801154. |
[17] | PRABHAKARAN K, BEIGH M O, LAKRA J, et al. Characteristics of 8 mol% yttria stabilized zirconia powder prepared by spray drying process[J]. Journal of Materials Processing Technology, 2007, 189: 178-181. |
[18] | AHAMER C, OPITZ A K, RUPP G M, et al. Revisiting the temperature dependent ionic conductivity of yttria stabilized zirconia (YSZ)[J]. Journal of The Electrochemical Society, 2017, 164(7): F790. |
[19] | BADWAL S P S. Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia[J]. Journal of materials science, 1984, 19: 1767-1776. |
[20] | MATSUI T, INABA M, MINESHIGE A, et al. Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs[J]. Solid State Ionics, 2005, 176(7-8): 647-654. |
[21] | FENG Z A, MACCHALA M L, CHUEH W C. Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO2-x: coupling between Ce3+ and carbonate adsorbates[J]. Physical Chemistry Chemical Physics, 2015, 17(18): 12273-12281. |
[22] | GÜÇTAŞ D, SARIBOĞA V, ÖKSÜZÖMER M A L İ F. Microstructure and ionic conductivity investigation of samarium doped ceria (Sm0.2Ce0.8O1.9) electrolytes prepared by the templating methods[J]. Turkish journal of chemistry, 2022, 46(3): 910-922. |
[23] | ARABACI A. Effect of the calcination temperature on the properties of Sm-doped CeO2[J]. Emerging Materials Research, 2020, 9(2): 296-301. |
[24] | JEONG I, YU H, LEE D, et al. Advances in the development and application of δ-Bi2O3-based ionic conductors for ceramic electrochemical cells[J]. ACS Applied Materials & Interfaces, 2025, 17(20): 28961-28981. |
[25] | SEPULVEDA E, MANGALARAJA R V, UDAYABHASKAR R, et al. Preparation of LSGM electrolyte via fast combustion method and analysis of electrical properties for ReSOC[J]. Journal of Electroceramics, 2022, 49(2): 85-93. |
[26] | FU M, GAO Y, ZHANG M, et al. Vanadium-assisted surface engineering of heterostructured cathode for enhanced protonic ceramic fuel cell performance[J]. Chemical Engineering Journal, 2025, 505: 159722. |
[27] | BEALL C E, FABBRI E, SCHMIDT T J. Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: the underlying mechanism [J]. ACS Catalysis, 2021, 11(5): 3094-3114. |
[28] | TIETZ F, SEBOLD D, BRISSE A, et al. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation[J]. Journal of Power Sources, 2013, 223: 129-135. |
[29] | Li H, Chen X, Chen S, et al. Composite manganate oxygen electrode enhanced with iron oxide nanocatalyst for high temperature steam electrolysis in a proton-conducting solid oxide electrolyzer[J]. International Journal of Hydrogen Energy, 2015, 40(25): 7920-7931. |
[30] | LAURENCIN J, HUBERT M, COUTURIER K, et al. Reactive mechanisms of LSCF single-phase and LSCF-CGO composite electrodes operated in anodic and cathodic polarisations[J]. Electrochimica Acta, 2015, 174: 1299-1316. |
[31] | BERNADET L, LAURENCIN J, ROUX G, et al. Effects of pressure on high temperature steam and carbon dioxide Co-electrolysis[J]. Electrochimica Acta, 2017, 253: 114-127. |
[32] | GAO Y, FU M, ZHAO S, et al. Self-assembled composite cathodes with TEC gradient for proton-conducting solid oxide fuel cells[J]. Advanced Functional Materials, 2025, 35(10): 2416625. |
[33] | SHAO Z, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170-173. |
[34] | DEY S, MUKHOPADHYAY J, LENKA R K, et al. Synthesis and characterization of Nanocrystalline Ba0.6Sr0.4Co0.8Fe0.2O3 for application as an efficient anode in solid oxide electrolyser cell[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3995-4007. |
[35] | HUANG Z, QI H, ZHAO Z, et al. Efficient CO2 electroreduction on a solid oxide electrolysis cell with La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.2Ce0.8O2-δ infiltrated electrode[J]. Journal of Power Sources, 2019, 434: 226730. |
[36] | TAO Z T, JIANG Y M, LEI L, et al. Pr0.5Ba0.5Co0.7Fe0.25Nb0.05O3-δ as air electrode for solid oxide steam electrolysis cells[J]. International Journal of Hydrogen Energy, 2019, 44(42): 23539-23546. |
[37] | Li P, CHEN X, SUN Y, et al. Fabrication of anode supported solid oxide electrolysis cell with the co-tape casting technique and study on co-electrolysis characteristics[J]. Journal of Power Sources, 2023, 569: 232912. |
[38] | GAO Y, LIU K, ZHANG X, et al. Cs-Doped BCCF perovskite with enhanced surface proton acid sites for high-performance R-PCECs[J]. Chemical Engineering Journal, 2025, 504: 158984. |
[39] | KIM S, LEE S W, LEE S, et al. Revolutionizing hydrogen production with LSGM-based solid oxide electrolysis cells: An innovative approach by sonic spray[J]. Electrochimica Acta, 2023, 463: 142751. |
[40] | YU L, HU X, GUO Y, et al. Breaking the Ion Ordering in the Perovskite Anode for Enhanced High-Temperature Oxygen Evolution Reaction Activity[J]. Journal of the American Chemical Society, 2025, 143: 30. |
[41] | YANG K, WANG Y, JIANG L, et al. Cobalt-free perovskite Ba0.95La0.05FeO3-δ as efficient and durable oxygen electrode for solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2023, 48(71): 27464-27472. |
[42] | LIU B, LI Z, XIAO G, et al. Pr2Ni0.8Co0.2O4+δ impregnated La0.6Sr0.4CoO3-δ oxygen electrode for efficient CO2 electroreduction in solid oxide electrolysis cells[J]. RSC advances, 2024, 14(19): 13251-13257. |
[43] | LIU Q, SHEN F, SONG G, et al. Tailoring ion ordering in perovskite oxide for high-temperature oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2023, 62(32): e202307057. |
[44] | CHU J, LAN H, CHEN T, et al. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ particles embedded PrBa0.5Sr0.5Co1.5Fe0.5O5+δ hollow nanofibers with 3D fast transmission path as oxygen electrode for proton-conducting solid oxide electrolysis cell[J]. Ceramics International, 2024, 50(20): 40391-40401. |
[45] | LI X, CHEN T, WANG C, et al. An active and stable high‐entropy ruddlesden‐popper type La1.4Sr0.6Co0.2Fe0.2Ni0.2Mn0.2Cu0.2O4±δ oxygen electrode for reversible solid oxide cells[J]. Advanced Functional Materials, 2024, 2411216. |
[46] | ZHANG P, CHANG J, WU Y, et al. Direct power to hydrogen to power based on solid oxide cells with a high-performance Sr-Ba free air electrode[J]. Fuel, 2024, 363: 130933. |
[47] | WU X, TIAN Y, ZHANG Y, et al. Promotion of Ca3Co4O9+δ oxygen electrode by in-situ exsolution of nanoparticles for solid oxide cells[J]. International Journal of Hydrogen Energy, 2024, 50: 1246-1254. |
[48] | RYU S, HWANG J, JEONG W, et al. A self-crystallized nanofibrous Ni-GDC anode by magnetron sputtering for low-temperature solid oxide fuel cells[J]. ACS applied materials & interfaces, 2023, 15(9): 11845-11852. |
[49] | SEHESTED J, GELTEN J A P, HELVEG S. Sintering of nickel catalysts: Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants[J]. Applied Catalysis A: General, 2006, 309(2): 237-246. |
[50] | HAUCH A, BRODERSEN K, Chen M, et al. Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability[J]. Solid State Ionics, 2016, 293: 27-36. |
[51] | WANG W, QU J F, JULLIAO P S B, et al. Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels: A mini review[J]. Energy Technology, 2019, 7(1):33-44. |
[52] | LV H, Lin L, ZHANG X, et al. In Situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co‐doped Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electrolysis[J]. Advanced Materials, 2020, 32(6): 1906193. |
[53] | WANG X, HU L, YANG M, et al. CO2 Electrolysis in Solid Oxide Electrolysis Cells: Key Materials, Application, and Challenges[M]. Green Hydrogen Production by Water Electrolysis. CRC Press, 2024: 320-344. |
[54] | DU J, LI C, NIU Y, et al. Construction of high performance fuel electrode in solid oxide electrolysis cells by tuning the surface oxygen defect to promote electrochemical reduction of CO2[J]. Ceramics International, 2024, 50(13): 22336-22345. |
[55] | WANG C, ZHU Y, ZHAO L, et al. Enhancing CO2 electrolysis efficiency via in-situ exsolution in high-entropy perovskite electrodes[J]. Separation and Purification Technology, 2025, 354: 128950. |
[56] | YANG Y, WANG Y, YANG Z, et al. A highly active and durable electrode with in situ exsolved Co nanoparticles for solid oxide electrolysis cells[J]. Journal of Power Sources, 2020, 478: 229082. |
[57] | LI Y, LI Y, YU L, et al. Achieving excellent and durable CO2 electrolysis performance on a dual-phase fuel electrode in solid oxide electrolysis cells[J]. Journal of Power Sources, 2021, 491: 229599. |
[58] | HENG Z, WAN Y, XIA C. Calcium stabilized La0.6Sr0.4Fe0.8Mn0.2O3-δ perovskite as ceramic fuel electrode for solid oxide cell[J]. Journal of Power Sources, 2022, 537: 231535. |
[59] | ZHANG X, NI J, NI C. Cobalt-doped MnFeCrO4 spinel as the fuel electrode for solid oxide electrolysis cells[J]. Energy & Fuels, 2023, 37(16): 12215-12224. |
[60] | WANG S, JIANG H, GU Y, et al. Mo-doped La0.6Sr0.4FeO3-δ as an efficient fuel electrode for direct electrolysis of CO2 in solid oxide electrolysis cells[J]. Electrochimica Acta, 2020, 337: 135794. |
[61] | YANG L, LI Y, HOU Z, et al. La1-xCaxFeO3-δ air electrode fabricated by glycine-nitrate combustion method for solid oxide electrolysis cell[J]. Ceramics International, 2021, 47(22): 32318-32323. |
[62] | WANG S, QIAN B, TANG Y, et al. Enhanced oxygen bulk diffusion of La0.6Sr0.4FeO3-δ fuel electrode by high valence transition metal doping for direct CO2 electrolysis in solid oxide electrolysis cells[J]. Electrochimica Acta, 2023, 439: 141659. |
[63] | HOU Y, WANG L, BIAN L, et al. High-performance La0.3Sr0.7Fe0.9Ti0.1O3-δ as fuel electrode for directly electrolyzing CO2 in solid oxide electrolysis cells[J]. Electrochimica Acta, 2020, 342: 136026. |
[64] | WANG W, LI H, PARK K Y, et al. Enhancing direct electrochemical CO2 electrolysis by introducing A‐site deficiency for the dual‐phase Pr(Ca)Fe(Ni)O3-δ cathode[J]. Energy & Environmental Materials, 2024: e12715. |
[65] | LI Z, PENG M, ZHU Y, et al. The facilitated cathodic elementary reactions of solid oxide electrolysis cells for CO2 conversion over a Ce decorated La0.43Ca0.37Ti0.94Ni0.06O3-δ electrocatalyst[J]. Journal of Materials Chemistry A, 2022, 10(38): 20350-20364. |
[66] | WANG X, HU H, XIE C, et al. In situ construction of a double perovskite heterostructure with exsolved FeNi3 alloy nanoparticles for CO2 electrolysis in solid oxide electrolysis cells[J]. Journal of Materials Chemistry A, 2024, 12(19): 11701-11709. |
[67] | YANG S, LU Y, WANG Q, et al. Effects of porous support microstructure enabled by the carbon microsphere pore former on the performance of proton-conducting reversible solid oxide cells[J]. International Journal of Hydrogen Energy, 2018, 43 (43): 20050-20058. |
[68] | DONG D, SHAO X, XIE K, et al. Microchanneled anode supports of solid oxide fuel cells [J]. Electrochemistry Communications, 2014, 42:64-67. |
[69] | SHAO X, DONG D, PARKINSON G, et al. Thin ceramic membrane with dendritic microchanneled sub structure and high oxygen permeation rate[J]. Journal of Membrane Science, 2017, 541: 653-660. |
[70] | ZHAO Z, TANG S, LIU X, et al. High-performance solid oxide electrolysis cell with the ordered straight pores in the support[J]. Journal of Power Sources, 2024, 591: 233868. |
[71] | FENG Z, ZHANG X, YUE Y, et al. Solid oxide electrolysis cell with biomimetic micron channel cathode for intermittent and efficient energy storage through hydrogen production[J]. Journal of the European Ceramic Society, 2024, 44(7): 4580-4588. |
[72] | NI Q, LI Y, ZHU Z, et al. Solid oxide electrolyzer positive electrodes with a novel microstructure show unprecedented stability at high current densities[J]. Journal of Materials Chemistry A, 2023, 11(32): 17298-17306. |
[73] | LI N, WANG M, SHEN Q, et al. Reduced concentration polarization and enhanced steam throughput conversion with a solid oxide electrolysis cell supported on an electrode with optimized pore structure[J]. International Journal of Hydrogen Energy, 2022, 47(51): 21673-21680. |
[74] | LIN J, CHEN L, LIU T, et al. The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell[J]. Journal of Power Sources, 2018, 374: 175-180. |
[75] | LI T, WANG T, WEI T, et al. Robust anode‐supported cells with fast oxygen release channels for efficient and stable CO2 electrolysis at ultrahigh current densities[J]. Small, 2021, 17(6): 2007211. |
[76] | HAJER A A, VELRAJ S, DARAMOLA D A, et al. Carbon dioxide reduction in solid oxide electrolyzer cells using transition metals infiltrated into Gd0.1Ce0.9O1.95 (GDC10) scaffolds[J]. Journal of Power Sources, 2023, 572: 233040. |
[77] | SUN L, ZHENG Q, LI N, et al. Direct electrolysis of CO2 in solid oxide cells supported on ceramic fuel electrodes with straight open pores and coated catalysts[J]. Solid State Ionics, 2020, 344: 115154. |
[78] | LI N, WANG L, WANG M, et al. Ni-cermet with straight pore paths as cathode for solid oxide electrolysis cell enabling energy-efficient and coking-resistant conversion of CO2[J]. Journal of Power Sources, 2022, 518: 230787. |
[79] | WANG T, LI T, WEI T, et al. Optimization of cathode functional layers of solid oxide electrolysis cells[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40917-40924. |
[80] | WANG M, LI N, WANG Z, et al. Electrochemical performance and redox stability of solid oxide fuel cells supported on dual-layered anodes of Ni-YSZ cermet and Ni–Fe alloy[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5453-5461. |
[81] | TIAN Y, GUO X, WU P, et al. Preparation and evaluation of Ni-based anodes with straight open pores for solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2020, 817: 153244. |
[82] | XU Y, ZHANG J, TU Z. Numerical simulation of flow channel geometries optimization for the planar solid oxide electrolysis cell[J]. International Journal of Hydrogen Energy, 2024, 52: 288-301. |
[83] | WANG Y, DU Y, NI M, et al. Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell[J]. Applied Thermal Engineering, 2020, 172: 114959. |
[84] | ZHANG H, ZENG Y, SHI R, et al. Evaluating the effect of flow configuration on the performance and thermal stress of solid oxide electrolysis cell[J]. Materials Science and Engineering: B, 2025, 316: 118144. |
[85] | ZHANG X, LI A, FEI Y, et al. Design of biomimetic leaf-like flow fields using three-dimensional numerical simulation for co-electrolysis in solid oxide electrolysis cell[J]. International Journal of Hydrogen Energy, 2024, 72: 326-337. |
[86] | LIU C, DANG Z, XI G. Numerical study on thermal stress of solid oxide electrolyzer cell with various flow configurations[J]. Applied Energy, 2024, 353: 122041. |
[87] | KANG K J, KIM S Y, HONG S D, et al. Gas Mixture Separation and Cooling System for 800℃ High-Temperature Steam Electrolysis Experimental Facility[C]//Trans. of the KNS spring meeting, Jeju, Korea. 2023. |
[88] | HWANG H, LIM Y, CHOI W. Reversible solid oxide cell system with thermocline-type thermal energy storage: Numerical and techno-economic analysis[J]. Energy Conversion and Management, 2024, 314: 118652. |
[89] | KIM J Y, MASTROPASQUA L, SAEEDMANESH A, et al. Development of thermal control strategies for solid oxide electrolysis cell systems under dynamic operating conditions-Hot-standby and cold-start scenarios[J]. Energy, 2025: 134679. |
[90] | 张雪洁,费宇轩,李昂,等.基于相变材料的固体氧化物电解池热管理策略研究[J].内燃机工程,2024,45(4):1-8. |
[91] | SUMI H. Co-electrolysis SOEC and internal reforming SOFC for achieving a carbon-neutral society[J]. RSC Sustainability, 2024, 2(5): 1568-1579. |
[92] | SONG Y, ZHANG X, XIE K, et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects[J]. Advanced Materials, 2019, 31(50): 1902033. |
[93] | TIAN S, YANG X, CHEN X, et al. Catalytic calcium-looping reforming of biogas: A novel strategy to produce syngas with improved H2/CO molar ratios[J]. Journal of Cleaner Production, 2020, 270: 122504.. |
[94] | WANG Y, LIU T, LEI L, et al. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production[J]. Fuel Processing Technology, 2017, 161: 248-258. |
[95] | LI N, KEANE M, MAHAPATRA M K, et al. Mitigation of the delamination of LSM anode in solid oxide electrolysis cells using manganese-modified YSZ[J]. International journal of hydrogen energy, 2013, 38(15): 6298-6303. |
[96] | JENSEN S H, LARSEN P H, MOGENSEN M. Hydrogen and synthetic fuel production from renewable energy sources[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3253-3257. |
[97] | STOOTS C, O'BRIEN J, HARTVIGSEN J. Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory[J]. International Journal of Hydrogen Energy, 2009, 34(9): 4208-4215. |
[98] | SUN X, CHEN M, LIU Y L, et al. Durability of solid oxide electrolysis cells for syngas production[J]. Journal of The Electrochemical Society, 2013, 160(9): F1074-F1080. |
[99] | LI W, WANG H, SHI Y, et al. Performance and methane production characteristics of H2O-CO2 co-electrolysis in solid oxide electrolysis cells[J]. International journal of hydrogen energy, 2013, 38(25): 11104-11109. |
[100] | 中国科学院宁波工业技术研究院燃料电池技术团队. SOEC千瓦级电解堆研发成功并顺利运行[EB/OL]. [2021-12-20]. https://sofc.nimte.ac.cn/view-23811.html. |
[101] | 中国科学院上海分院. 上海应物所成功实现十千瓦级固体氧化物共电解二氧化碳/水蒸气制备氢碳比可调的合成气技术[EB/OL]. [2023-11-14]. https://shb.cas.cn/kjjz2016/202311/t20231114_6932828.html. |
[102] | 王海龙, 刘书贤, 王东,等. 固体氧化物电解池(SOEC)共电解H2O和CO2的研究进展[J]. 当代化工研究, 2023, (02): 20-23. |
[103] | ANDIKA R, NANDIYANTO A B D, Putra Z A, et al. Co-electrolysis for power-to-methanol applications[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 227-241. |
[104] | LI P, GONG S, LI C, et al. Analysis of routes for electrochemical conversion of CO2 to methanol[J]. Clean Energy, 2022, 6(1): 202-210. |
[105] | 周怀荣, 伊嘉伟, 曹阿波, 郭奥雪, 王东亮, 杨勇, 杨思宇. 共电解耦合CO2间接加氢制甲醇工艺集成设计与性能评价. 化工学报[J], 2024, 1-14. |
[106] | CHEN L, CHEN F, XIA C. Direct synthesis of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells[J]. Energy & Environmental Science, 2014, 7(12): 4018-4022. |
[107] | PARIGI D, GIGLIO E, SOTO A, et al. Power-to-fuels through carbon dioxide Re-Utilization and high-temperature electrolysis: A technical and economical comparison between synthetic methanol and methane[J]. Journal of Cleaner Production, 2019, 226: 679-691. |
[108] | 中国科学院. 大连化学物理研究所. 大连化物所开发出用于电催化甲烷重整的高效钙钛矿阳极催化剂 [EB/OL]. [2024-7-2]. https://www.cas.cn/syky/202407/t20240702_5023863.shtml. |
[109] | YU S B, LEE S H, MEHRAN M T, et al. Syngas production in high performing tubular solid oxide cells by using high-temperature H2O/CO2 co-electrolysis[J]. Chemical Engineering Journal, 2018, 335: 41-51. |
[110] | XI C, SANG J, WU A, et al. Electrochemical performance and durability of flat-tube solid oxide electrolysis cells for H2O/CO2 co-electrolysis[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10166-10174. |
[111] | ANELLI S, HERNANDEZ E, BERNADET L, et al. Co-electrolysis of steam and carbon dioxide in large area solid oxide cells based on infiltrated mesoporous oxygen electrodes[J]. Journal of Power Sources, 2020, 478: 228774. |
[112] | HERNANDEZ E, BAIUTTI F, MORATA A, et al. Infiltrated mesoporous oxygen electrodes for high temperature co-electrolysis of H2O and CO2 in solid oxide electrolysis cells[J]. Journal of Materials Chemistry A, 2018, 6(20): 9699-9707. |
[113] | BERNADET L, MONCASI C, TORRELL M, et al. High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14208-14217. |
[114] | HOU S, XIE K. Enhancing the performance of high-temperature H2O/CO2 co-electrolysis process on the solid oxide Sr2Fe1.6Mo0.5O6-δ-SDC/LSGM/Sr2Fe1.5Mo0.5O6-δ-SDC cell[J]. Electrochimica Acta, 2019, 301: 63-68. |
[115] | WANG Y, LIU T, FANG S, et al. Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes[J]. Journal of Power Sources, 2016, 305: 240-248. |
[116] | BIAN L, DUAN C, WANG L, et al. An all-oxide electrolysis cells for syngas production with tunable H2/CO yield via co-electrolysis of H2O and CO2[J]. Journal of Power Sources, 2021, 482: 228887. |
[117] | LI Y, LI P, HU B, et al. A nanostructured ceramic fuel electrode for efficient CO2/H2O electrolysis without safe gas[J]. Journal of Materials Chemistry A, 2016, 4(23): 9236-9243. |
[118] | BIAN L, DUAN C, WANG L, et al. Highly efficient, redox-stable, La0.5Sr0.5Fe0.9Nb0.1O3-δ symmetric electrode for both solid-oxide fuel cell and H2O/CO2 co-electrolysis operation[J]. Journal of The Electrochemical Society, 2018, 165(11): F981. |
[119] | TORRELL M, GARCIA-RODRIGUEZ S, MORATA A, et al. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas[J]. Faraday discussions, 2015, 182: 241-255. |
[120] | ANELLI S, BAIUTTI F, HORNES A, et al. Improved mesostructured oxygen electrodes for highly performing solid oxide cells for co-electrolysis of steam and carbon dioxide[J]. Journal of Materials Chemistry A, 2019, 7(48): 27458-27468. |
[121] | TAO Y, EBBESEN S D, MOGENSEN M B. Carbon deposition in solid oxide cells during co-electrolysis of H2O and CO2[J]. Journal of The Electrochemical Society, 2014, 161(3): F337. |
[1] | 刘宏辉, 李冬辉, 钱其峰, 肖凌超, 熊磊, 陈仲国. 氮化钒基电极材料的制备及其在超级电容器中的应用进展[J]. 储能科学与技术, 2025, 14(8): 3110-3121. |
[2] | 班宵汉, 周明霞, 胡洪瑞, 刘富亮, 马东伟, 石斌, 张校刚. 基于纳/微结构钴酸锂颗粒级配正极的超高功率锂离子电池[J]. 储能科学与技术, 2025, 14(8): 2950-2959. |
[3] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[4] | 王浩天, 王永刚, 董晓丽. 基于有机电极材料的低温电池研究进展[J]. 储能科学与技术, 2024, 13(7): 2259-2269. |
[5] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[6] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[7] | 周洋, 韩培玉, 牛迎春, 徐春明, 徐泉. 金属有机框架衍生的C-Bi/CC电极制备及其在铁铬液流电池中的电化学性能[J]. 储能科学与技术, 2024, 13(2): 381-389. |
[8] | 刘红, 李俊霞. 高比能二次锂电池电极材料的储能系统配电网运行建模与仿真研究[J]. 储能科学与技术, 2024, 13(1): 342-344. |
[9] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
[10] | 袁紫微, 林楚园, 袁紫嫣, 孙晓丽, 钱庆荣, 陈庆华, 曾令兴. 锌离子电池低温性能研究进展[J]. 储能科学与技术, 2023, 12(1): 278-298. |
[11] | 董乐贤, 郑群, 黄悦, 田志鹏, 刘建平, 王超, 梁波, 雷励斌. 管状固体氧化物燃料电池前沿技术研究进展[J]. 储能科学与技术, 2023, 12(1): 131-138. |
[12] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[13] | 詹世英, 于东旭, 陈楠, 杜菲. 非金属阳离子水系二次电池研究进展[J]. 储能科学与技术, 2021, 10(6): 2144-2155. |
[14] | 练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
[15] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||