储能科学与技术

• XXXX •    

固体氧化物电解池材料和结构优化的研究进展

姚昊天1(), 董珊芝1, 郝杨2, 邵勤思1, 刘杨1(), 赵玉峰1, 张久俊1,3   

  1. 1.上海大学理学院,上海 200444
    2.中煤天津设计工程有限责任公司,天津 300120
    3.福州大学材料科学与工程学院 福建 福州 350108
  • 收稿日期:2025-07-24 修回日期:2025-08-25
  • 通讯作者: 刘杨 E-mail:yht844676278@shu.edu.cn;yangliu45@shu.edu.cn
  • 作者简介:姚昊天(2000—),男,硕士研究生,从事燃料电池研究,E-mail:yht844676278@shu.edu.cn
  • 基金资助:
    上海市促进产业高质量发展专项资金(GYQJ-2023-1-06)

Research progress on material and structural optimization of solid oxide electrolyzer cells

Haotian YAO1(), Shanzhi DONG1, Yang HAO2, Qinsi SHAO1, Yang LIU1(), Yufeng ZHAO1, Jiujun ZHANG1,3   

  1. 1.College of Sciences, Shanghai University, Shanghai 200444
    2.China Coal Tianjin Design and Engineering Co. , Ltd. , Tianjin 300120
    3.College of Materials Science and Engineering, Fuzhou University, Fujian Fuzhou, 350108
  • Received:2025-07-24 Revised:2025-08-25
  • Contact: Yang LIU E-mail:yht844676278@shu.edu.cn;yangliu45@shu.edu.cn

摘要:

固体氧化物电解池(SOEC)作为新一代高温电化学能量转换装置,通过固体氧化物电解质的氧离子传导特性,实现了电能向化学能的高效转化,在分布式储能和可再生能源领域展现出巨大的价值。其核心优势在于:SOEC可与光伏或光热系统高效耦合,实现间歇性电能向可储运氢能的灵活转化。此外,SOEC具备CO2/H2O共电解功能,能够通过化学链转化过程,将温室气体高效转化为甲醇、甲烷等清洁燃料,进而构建“电-氢-化学品”的级联式资源利用体系。本文系统讲述了SOEC的热力学基础与构造特征,重点分析了燃料电极、氧电极及电解质的研究进展,并分析了目前SOEC所面临的问题,总结归纳电极材料、电池结构以及流场和热管理等改进策略。同时,本文基于目前研究进展,对SOEC在高温共电解等方向的发展路径及其在构建低碳能源体系所能发挥的作用进行了展望。

关键词: 固体氧化物电解池, CO2/H2O共电解, 电极材料, 电池结构

Abstract:

Solid oxide electrolysis cells (SOECs), as a new generation of high-temperature electrochemical energy conversion devices, have been demonstrated to great advantages in the fields of distributed energy storage and renewable energyutilization due to the efficient conversion of electrical energy to chemical energy. Also, SOEC can be effectively integrated with photovoltaic or solar thermal systems, facilitating the flexible transformation of intermittent electrical energy into storable and transportable hydrogen energy. Furthermore, SOECs possess the capability to co-electrolyze CO2 and H2O, enabling the efficient conversion of greenhouse gases into clean fuels such as methanol and methane through chemical chain conversion processes, thereby establishing a cascading resource utilization system referred to as the "electricity-hydrogen-chemicals" framework. This paper provides a systematic overview of the thermodynamic foundations and structural characteristics of SOECs, with particular emphasis on recent advances in fuel electrodes, oxygen electrodes, and electrolyte materials. It also examines the current challenges confronting SOEC technologies and summarizes improvement strategies related to electrode material development, cell architecture, flow field optimization, and thermal management. The potential development pathways for SOECs in the areas of co-electrolysis and the developing of low-carbon energy system.

Key words: solid oxide electrolysis cells, co-electrolysis of CO2/H2O, electrode materials, cell architecture

中图分类号: