[1] |
Chen X, Lei H, Xiong R, et al. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles[J]. Applied Energy, 2019, 255: 113758.
|
[2] |
Hallmann M, Wenge C, Komarnicki P, Balischewski S. Methods for lithium-based battery energy storage SOC estimation. part I: Overview. Archives of Electrical Engineering, 2022, 71(1): 139-157.
|
[3] |
林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004(5):376-378
|
[4] |
袁照凯, 范秋华, 王冬青, 等. 基于 MIAEKF 的多温度下锂电池 SOC 估计[J]. 储能科学与技术, 2024, 13(2): 680.
|
[5] |
Jinpeng Tian, Rui Xiong, Weixiang Shen, and Jiahuan Lu. State-of-charge estimation of lifepo4 batteries in electric vehicles: A deep-learning enabled approach. Applied Energy, 291:116812, 2021.
|
[6] |
James Ross Macdonald, William B Johnson, ID Raistrick, DR Franceschetti, Norbert Wagner, MCH McKubre, DD Macdonald, B Sayers, N Bonanos, BCH Steele, e al. Impedance spectroscopy: theory, experiment, and applications. John Wiley Sons, 2018
|
[7] |
梅简,裘吕超,惠洋,等.退役磷酸铁锂动力电池性能评估[J].电源技术, 2021, 45(8):5.
|
[8] |
刘家豪,张宏伟,袁永军.基于LSTM和EIS的锂电池健康状态估计[J].传感器与微系统, 2021, 40(12):59-61,65.
|
[9] |
Faraji-Niri M, Rashid M, Sansom J,et al.Accelerated state of health estimation of second life lithium-ion batteries via electrochemical impedance spectroscopy tests and machine learning techniques[J].Journal of Energy Storage, 2023.
|
[10] |
邵素霞,朱振东,王蓉蓉,等.三种方法测定电极材料的扩散系数[J].电池, 2021, 51(6):5.
|
[11] |
黄渭彬,张彪,范金成,等.ZIF-8复合PEO基固态电解质的制备与改性研究[J].储能科学与技术, 2023, 12(4):1083-1092.
|
[12] |
Marvin Messing, Tina Shoa, Ryan Ahmed, and Saeid Habibi. Battery soc estimation from eis using neural nets. In 2020 IEEE Transportation Electrification Conference Expo (ITEC), pages 588–593. IEEE, 2020.
|
[13] |
于天剑,曾笑颜,冯恩来,等.基于LSTM-Transformer多通道特征融合的锂电池SOC-SOH联合估计[J/OL].铁道科学与工程学报,1-13[2025-07-27].https://doi.org/10.19713/j.cnki.43-1423/u.T20250577.陈金荣. 锂离子电池交流阻抗谱应用[J]. 物理化学进展, 2024, 13(2): 273-283. https://doi.org/10.12677/japc.2024.132032
|
[14] |
陈金荣. 锂离子电池交流阻抗谱应用[J]. 物理化学进展, 2024, 13(2): 273-283. https://doi.org/10.12677/japc.2024.132032
|
[15] |
Zheyuan Pang, Kun Yang, Zhengxiang Song, Guangyang Chen, and Pengcheng Niu. Research on soc estimation of lithium battery based on electrochemical impedance spectroscopy. In 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), pages 1638–1643. IEEE, 2023.
|
[16] |
Uwe Westerhoff, Kerstin Kurbach, Frank Lienesch, and Michael Kurrat. Analysis of lithium-ion battery models based on electrochemical impedance spectroscopy. Energy Technology, 4(12):1620–1630, 2016.
|
[17] |
Ning Z, Venugopal P, Rietveld G, et al. Data-driven methods for robust battery capacity estimation based on electrochemical impedance spectroscopy[C]//2023 25th European Conference on Power Electronics and Applications (EPE'23 ECCE Europe). IEEE, 2023: 1-8
|
[18] |
Yin L, Zhou J, Du X, et al. Deep Learning Based SOC Estimation Method for Battery in Energy Storage Field Station[C]//2024 IEEE 8th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2024: 186-191.
|
[19] |
Xie, L., "TRLS: A Time Series Representation Learning Framework via Spectrogram for Medical Signal Processing", iarXiv e-prints/i, Art. no. arXiv:2401.05431, 2024. doi:10.48550/arXiv.2401.05431.
|
[20] |
Amiri, M.H., Mehrabi Hashjin, N., Montazeri, M. et al. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Sci Rep 14, 5032 (2024). https://doi.org/10.1038/s41598-024-54910-3
|
[21] |
Vaswani A, Shazeer N, Parmar N,et al.Attention Is All You Need[J].arXiv, 2017.DOI:10.48550/arXiv.1706.03762.
|
[22] |
Ekambaram V, Jati A, Nguyen N, et al. Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting[C]//Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining. 2023: 459-469.
|