• XXXX •
收稿日期:2025-10-17
修回日期:2025-11-12
通讯作者:
王珂
E-mail:wangke@ccelab.com.cn
作者简介:王珂(1986—),男,理学博士,E-mail:wangke@ccelab.com.cn;
基金资助:
Ke Wang1(
), Sifen Xu2, Tingfeng Zou2
Received:2025-10-17
Revised:2025-11-12
Contact:
Ke Wang
E-mail:wangke@ccelab.com.cn
摘要:
钠离子电池预钠化技术提供活性钠离子的第二来源,抵消首次充电时负极不可逆的钠离子损失,进而提升正极材料利用率,有效缓解能量密度偏低问题。在众多预钠化技术中,有机正极补钠法环境适应性强,无需严格控制环境湿度,是推动预钠化技术大规模应用的理想选择。本文系统梳理并分析了已发表的有机正极补钠剂。根据官能团特征,本文将补钠剂划分为羧酸钠盐和酚钠盐两大类别,逐一介绍其核心特性,并从比容量、分解电压、反应产物、原材料价格等指标横向对比,清晰呈现各种补钠剂优劣。本文针对研究广泛的羧酸钠盐,深入剖析其补钠机理,详细阐释钠离子释放、有机阴离子失电子及重排的全过程,为理解作用机制提供思路。本文讨论了有机正极补钠剂分解产气和残留等关键问题。同时,本文介绍了主流改善方案:碳复合技术增强导电性,纳米化处理增大反应活性,双层涂布技术改善电极结构稳定性,为性能及应用优化提供可行路径。最后,提出未来有机正极补钠剂开发的设计原则,涵盖性能、工艺和成本等维度,期望为相关技术研发与应用提供指导。
中图分类号:
王珂, 许斯奋, 邹庭丰. 钠离子电池有机正极补钠剂研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0921.
Ke Wang, Sifen Xu, Tingfeng Zou. Research Progress on Organic Sacrificial Salts in Cathodes for Sodium-Ion Batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0921.
表1
无机和有机补钠剂稳定性及比容量对比"
| 补钠剂类型 | 化合物 | 环境稳定性 | 比容量 | 总结 |
|---|---|---|---|---|
| 无机补钠剂 | Na2O/ Na2O2/ Na3P/ Na2S/ NaBH4/ NaNH2/ Na2NiO2 NaCrO2/ Na3PS3O | 遇水分解,干燥无法恢复活性 | 比容量243-864 mAh·g-1 | 比容量较高,大部分遇水分解,干燥也无法恢复活性。 |
| NaN3/ Na2CO3/ NaNO2 | 遇水再干燥后恢复活性 | |||
| 有机补钠剂 | CHO2Na/ C2H3O2Na/ C3H5O2Na / Na2C2O4/ C3H2O4Na2 / C4H4O4Na2 / C5H6O4Na2/ C2H4NO2Na/ C4H5NO4Na2/ C5H7NO4Na2/ C10H12N2O8Na4·4H2O/ C14H18N3O10Na5/ Na2C3O5/ C4H4Na2O5/ C4H4Na2O5/ C6H5Na3O7/ Na2C4O4/ Na2C6O6 | 遇水再干燥可恢复活性(可以在水溶液中合成) | 比容量266-400 mAh·g-1 | 比容量较低,绝大部分遇水再干燥可恢复活性。 |
| Na2C6H4O2 | 易被空气氧化 |
表2
烷基羧酸钠关键参数对比表"
| 名称 | 化学式 | CAS | 摩尔质量(g·mol-1) | 理论比容量(mAh·g-1) | 实测分解电压(V) | 参考文献 |
|---|---|---|---|---|---|---|
| 甲酸钠 | CHO2Na | 141-53-7 | 68.01 | 394.1 | 4.19-4.29 | [ |
| 乙酸钠 | C2H3O2Na | 127-09-3 | 82.03 | 326.7 | 4.00-4.18 | [ |
| 丙酸钠 | C3H5O2Na | 137-40-6 | 96.06 | 279.0 | 4.10 | [ |
| 草酸钠 | Na2C2O4 | 62-76-0 | 134.00 | 400.0 | 3.70-4.41 | [ |
| 丙二酸钠 | C3H2O4Na2 | 141-95-7 | 148.03 | 362.1 | 3.82-3.98 | [ |
| 丁二酸钠 | C4H4O4Na2 | 150-90-3 | 162.05 | 330.8 | 4.39 | [ |
| 戊二酸钠 | C5H6O4Na2 | 13521-83-0 | 176.08 | 304.4 | 4.30 | [ |
表3
含氮羧酸钠关键参数对比表"
| 名称 | 化学式 | CAS | 摩尔质量(g·mol-1) | 理论比容量(mAh·g-1) | 实测分解电压(V) | 参考文献 |
|---|---|---|---|---|---|---|
| 氨基乙酸钠 | C2H4NO2Na | 6000-44-8 | 97.05 | 276.1 | 3.85 | [ |
| 亚氨基二乙酸二钠 | C4H5NO4Na2 | 928-72-3 | 177.06 | 302.7 | 3.82 | [ |
| N-甲基亚氨二乙酸二钠 | C5H7NO4Na2 | / | 191.09 | 280.5 | 3.60 | [ |
| 四水合乙二胺四乙酸四钠 | C10H12N2O8Na4·4H2O | 64-02-8 | 380.17 | 282.0 | 3.80 | [ |
| 二乙烯三胺五乙酸五钠 | C14H18N3O10Na5 | 140-01-2 | 503.26 | 266.3 | 4.00 | [ |
表6
补钠剂或原料大宗报价(单位:元/吨)(2024-11-04 - 2025-11-04),数据源自生意社"
| 对比项 | 当日均价 | 最小值 | 最大值 | 中位值 | 平均值 |
|---|---|---|---|---|---|
| 甲酸 | 2,830 | 2,400 | 3,550 | 2,975 | 2,929 |
| 甲酸钠 | 2,642 | 2,471 | 2,781 | 2,626 | 2,635 |
| 乙酸 | 2,420 | 2,350 | 3,030 | 2,690 | 2,703 |
| 无水乙酸钠 | 5,700 | 5,700 | 6,025 | 5,862 | 5,813 |
| 丙酸 | 5,429 | 5,429 | 7,733 | 6,581 | 6,787 |
| 草酸 | 2,986 | 2,850 | 3,257 | 3,054 | 3,049 |
| 丙二酸 | 26,750 | 未查到年度报价统计数据 | |||
| 丁二酸 | 9,760 | 未查到年度报价统计数据 | |||
| 丁二酸二钠 | 10,750 | 10,750 | 11,000 | 10,875 | 10,969 |
| 戊二酸 | 38,000 | 未查到年度报价统计数据 | |||
| 氨基乙酸 | 10,550 | 未查到年度报价统计数据 | |||
| 亚氨基二乙酸二钠 | 52,000 | 未查到年度报价统计数据 | |||
| N-甲基亚氨二乙酸 | 未查到大宗报价,试剂价格约722.8元/kg | ||||
| 乙二胺四乙酸四钠 | 11,633 | 11,400 | 11,925 | 11,662 | 11,731 |
| 二乙烯三胺五钠水溶液(50%) | 9,840 | 未查到年度报价统计数据 | |||
| 中草酸/中草酸钠 | 未查到大宗报价,原材料中草酸二乙酯试剂价格约1,800元/kg | ||||
| 二甘醇酸/二甘醇酸钠 | 未查到大宗报价,原材料二甘醇酸试剂价格约1,226元/kg | ||||
| 羟基丁二酸 | 14,200 | 未查到年度报价统计数据 | |||
| 一水柠檬酸 | 4,750 | 4,750 | 5,188 | 4,969 | 4,948 |
| 柠檬酸钠 | 5,167 | 5,117 | 5,180 | 5,148 | 5,141 |
| 方酸 | 未查到大宗报价,方酸试剂价格约2,500元/kg | ||||
| 玫棕酸钠 | 未查到大宗报价,玫棕酸钠试剂价格约3,240元/kg | ||||
| 邻苯二酚 | 12,700 | 未查到年度报价统计数据 | |||
表9
补钠剂在全电池中补钠效率"
| 补钠剂 | 正级材料 | 补钠剂比例 | 实测正极+补钠剂充电比容量/mAh·g-1 | 实测正极充电比容量/mAh·g-1 | 补钠剂理论比容量/mAh·g-1 | 补钠效率 |
|---|---|---|---|---|---|---|
| CHO2Na [ | Na0.66Ni0.26Zn0.07Mn0.67O2 | 15% | 193 | 102 | 394.1 | 153.9% |
| Na2C2O4[ | Na2/3Ni1/3Mn1/3Ti1/3O2 | 10% | 180 | 120 | 400.0 | 150.0% |
| C3H2O4Na2 [ | Na2/3Ni1/3Mn1/3Ti1/3O2 | 20% | 250 | 120 | 362.1 | 179.5% |
| C4H5NO4Na2 [ | P2-Na2/3Ni1/3Mn1/3Ti1/3O2 | 10% | 189.4 | 96.3 | 302.7 | 307.3% |
| C6H5Na3O7 [ | Na3V2(PO4)2F3/rGO | 10% | 160 | 115 | 311.5 | 144.4% |
| Na2C4O4[ | P2-Na2/3Mn1/2Fe1/2O2 | 31% | 185 | 101 | 339.2 | 79.9% |
| Na2C6O6[ | P2-Na0.67Mn0.6Fe0.25Co0.15O2 | 20% | 210 | 120 | 250.4 | 179.7% |
| [1] | KITTNER N, LILL F, KAMMEN D M. Energy storage deployment and innovation for the clean energy transition[J/OL]. Nature Energy, 2017, 2(9): 17125. DOI:10.1038/nenergy.2017.125. |
| [2] | EFTEKHARI A, KIM D W. Sodium-ion batteries: New opportunities beyond energy storage by lithium[J/OL]. Journal of Power Sources, 2018, 395: 336-348. DOI:10.1016/j.jpowsour.2018.05.089. |
| [3] | NAYAK P K, YANG L, BREHM W, et al. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises[J/OL]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. DOI:10.1002/anie.201703772. |
| [4] | HU Y S, LI Y. Unlocking Sustainable Na-Ion Batteries into Industry[J/OL]. ACS Energy Letters, 2021, 6(11): 4115-4117. DOI:10.1021/acsenergylett.1c02292. |
| [5] | YADAV P, PATRIKE A, WASNIK K, et al. Strategies and practical approaches for stable and high energy density sodium-ion battery: a step closer to commercialization[J/OL]. Materials Today Sustainability, 2023, 22: 100385. DOI:10.1016/j.mtsust.2023.100385. |
| [6] | RUDOLA A, RENNIE A J R, HEAP R, et al. Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook[J/OL]. Journal Of Materials Chemistry A, 2021, 9(13): 8279-8302. DOI:10.1039/D1TA00376C. |
| [7] | DELMAS C. Sodium and Sodium-Ion Batteries: 50 Years of Research[J/OL]. Advanced Energy Materials, 2018, 8(17): 1703137. DOI:10.1002/aenm.201703137. |
| [8] | MENG J, JIA G, YANG H, et al. Recent advances for SEI of hard carbon anode in sodium-ion batteries: A mini review[J/OL]. Frontiers in Chemistry, 2022, 10: 986541. DOI:10.3389/fchem.2022.986541. |
| [9] | HE H, SUN D, TANG Y, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J/OL]. Energy Storage Materials, 2019, 23: 233-251. DOI:10.1016/j.ensm.2019.05.008. |
| [10] | ARAVINDAN V, LEE Y S, MADHAVI S. Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li-Ion Batteries[J/OL]. Advanced Energy Materials, 2017, 7(17): 1602607. DOI:10.1002/aenm.201602607. |
| [11] | PAN Y, ZHANG Y, PARIMALAM B S, et al. Investigation of the solid electrolyte interphase on hard carbon electrode for sodium ion batteries[J/OL]. Journal of Electroanalytical Chemistry, 2017, 799: 181-186. DOI:10.1016/j.jelechem.2017.06.002. |
| [12] | LIN K, LIU M, QIN X, et al. Practical Evaluation of Presodiation Techniques for High Energy Sodium-Based Batteries[J/OL]. ACS Nano, 2025, 19(18): 17062-17086. DOI:10.1021/acsnano.5c02104. |
| [13] | DEWAR D, GLUSHENKOV A M. Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field[J/OL]. Energy & Environmental Science, 2021, 14(3): 1380-1401. DOI:10.1039/D0EE02782K. |
| [14] | SONG Z, ZOU K, XIAO X, et al. Presodiation Strategies for the Promotion of Sodium-Based Energy Storage Systems[J/OL]. Chemistry – A European Journal, 2021, 27(65): 16082-16092. DOI:10.1002/chem.202102433. |
| [15] | WANG Z, CHEN S, QIU J, et al. Full-Cell Presodiation Strategy to Enable High-Performance Na-Ion Batteries[J/OL]. Advanced Energy Materials, 2023, 13(45): 2302514. DOI:10.1002/aenm.202302514. |
| [16] | ZHANG S, CAO R, PU X, et al. Access to advanced sodium-ion batteries by presodiation: Principles and applications[J/OL]. Journal of Energy Chemistry, 2024, 92: 162-175. DOI:10.1016/j.jechem.2024.01.029. |
| [17] | ZOU K, DENG W, CAI P, et al. Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives[J/OL]. Advanced Functional Materials, 2021, 31(5): 2005581. DOI:10.1002/adfm.202005581. |
| [18] | JIAN-JIA MU, ZHAO-MENG LIU, QING-SONG LAI, et al. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors[J/OL]. Energy Materials, 2022, 2(6): 200043. DOI:10.20517/energymater.2022.57. |
| [19] | CHEN J, LI X, MI L, et al. Emerging presodiation strategies for long-life sodium-ion batteries[J/OL]. Energy Lab, 2023, 1(3): 230008. DOI:10.54227/elab.20230008. |
| [20] | WANG H, XIAO Y, SUN C, et al. A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode[J/OL]. Royal Society of Chemistry Advances, 2015, 5(129): 106519-106522. DOI:10.1039/C5RA21235A. |
| [21] | TANG J, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J/OL]. Journal of Power Sources, 2018, 396: 476-482. DOI:10.1016/j.jpowsour.2018.06.067. |
| [22] | MOEEZ I, JUNG H G, LIM H D, et al. Presodiation Strategies and Their Effect on Electrode–Electrolyte Interphases for High-Performance Electrodes for Sodium-Ion Batteries[J/OL]. ACS Applied Materials & Interfaces, 2019, 11(44): 41394-41401. DOI:10.1021/acsami.9b14381. |
| [23] | LIU X, TAN Y, LIU T, et al. A Simple Electrode-Level Chemical Presodiation Route by Solution Spraying to Improve the Energy Density of Sodium-Ion Batteries[J/OL]. Advanced Functional Materials, 2019, 29(50): 1903795. DOI:10.1002/adfm.201903795. |
| [24] | MIRZA S, SONG Z, ZHANG H, et al. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na4V2(PO4)3 as the cathode material[J/OL]. Journal Of Materials Chemistry A, 2020, 8(44): 23368-23375. DOI:10.1039/D0TA08186H. |
| [25] | LIU Y, WU X, MOEEZ A, et al. Na-Rich Na3V2(PO4)3 Cathodes for Long Cycling Rechargeable Sodium Full Cells[J/OL]. Advanced Energy Materials, 2023, 13(3): 2203283. DOI:10.1002/aenm.202203283. |
| [26] | ZHANG S, WANG J, CHEN K, et al. Aromatic Ketones as Mild Presodiating Reagents toward Cathodes for High-Performance Sodium-Ion Batteries[J/OL]. Angewandte Chemie International Edition, 2024, 63(10): e202317439. DOI:10.1002/anie.202317439. |
| [27] | 李昱, 李丹丹, 谢飞, 等.钠离子电池正极预钠化技术进展[J/OL]. 储能科学与技术,2025, 14(5): 1748-1757. DOI:10.19799/j.cnki.2095-4239.2024.1085. LI Y, LI D, XIE F, et al. Recent progress of cathode presodiation strategies in sodium-ion batteries, 2025, 14(5): 1748-1757. DOI:10.19799/j.cnki.2095-4239.2024.1085. |
| [28] | JEŻOWSKI P, CHOJNACKA A, PAN X, et al. Sodium amide as a "zero dead mass" sacrificial material for the pre-sodiation of the negative electrode in sodium-ion capacitors[J/OL]. Electrochimica Acta, 2021, 375: 137980. DOI:10.1016/j.electacta.2021.137980. |
| [29] | LIU X, TAN Y, WANG W, et al. Ultrafine Sodium Sulfide Clusters Confined in Carbon Nano-polyhedrons as High-Efficiency Presodiation Reagents for Sodium-Ion Batteries[J/OL]. ACS Applied Materials & Interfaces, 2021, 13(23): 27057-27065. DOI:10.1021/acsami.1c05144. |
| [30] | GUO Y J, NIU Y B, WEI Z, et al. Insights on Electrochemical Behaviors of Sodium Peroxide as a Sacrificial Cathode Additive for Boosting Energy Density of Na-Ion Battery[J/OL]. ACS Applied Materials & Interfaces, 2021, 13(2): 2772-2778. DOI:10.1021/acsami.0c20870. |
| [31] | ZHANG B, DUGAS R, ROUSSE G, et al. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries[J/OL]. Nature Communications, 2016, 7(1): 10308. DOI:10.1038/ncomms10308. |
| [32] | CHEN Y, ZHU Y, SUN Z, et al. Achieving High-Capacity Cathode Presodiation Agent Via Triggering Anionic Oxidation Activity in Sodium Oxide[J/OL]. Advanced Materials, 2024, 36(36): 2407720. DOI:10.1002/adma.202407720. |
| [33] | SATHIYA M, THOMAS J, BATUK D, et al. Dual Stabilization and Sacrificial Effect of Na2CO3 for Increasing Capacities of Na-Ion Cells Based on P2-NaxMO2 Electrodes[J/OL]. Chemistry of Materials, 2017, 29(14): 5948-5956. DOI:10.1021/acs.chemmater.7b01542. |
| [34] | JEŻOWSKI P, CROSNIER O, BROUSSE T. Sodium borohydride (NaBH4) as a high-capacity material for next-generation sodium-ion capacitors[J/OL]. Open Chemistry, 2021, 19(1): 432-441. DOI:10.1515/chem-2021-0040. |
| [35] | PAN X, CHOJNACKA A, JEŻOWSKI P, et al. Na2S sacrificial cathodic material for high performance sodium-ion capacitors[J/OL]. Electrochimica Acta, 2019, 318: 471-478. DOI:10.1016/j.electacta.2019.06.086. |
| [36] | PARK K, YU B C, GOODENOUGH J B. Electrochemical and Chemical Properties of Na2NiO2 as a Cathode Additive for a Rechargeable Sodium Battery[J/OL]. Chemistry of Materials, 2015, 27(19): 6682-6688. DOI:10.1021/acs.chemmater.5b02684. |
| [37] | LIAO J, ZHANG F, LU Y, et al. Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes[J/OL]. Chemical Engineering Journal, 2022, 437: 135275. DOI:10.1016/j.cej.2022.135275. |
| [38] | SHEN B, ZHAN R, DAI C, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells[J/OL]. Journal of Colloid and Interface Science, 2019, 553: 524-529. DOI:10.1016/j.jcis.2019.06.056. |
| [39] | MARTINEZ DE ILARDUYA J, OTAEGUI L, LÓPEZ DEL AMO J M, et al. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery[J/OL]. Journal of Power Sources, 2017, 337: 197-203. DOI:10.1016/j.jpowsour.2016.10.084. |
| [40] | ZHAO B, ZHANG F, LI W, et al. Sodium Formate as a Highly Efficient Sodium Compensation Additive for Sodium-Ion Batteries with a P2-Type Layered Oxide Cathode[J/OL]. Journal of Electronic Materials, 2024, 53(4): 1964-1974. DOI:10.1007/s11664-024-10938-9. |
| [41] | ZOU K, SONG Z, GAO X, et al. Molecularly Compensated Pre-Metallation Strategy for Metal-Ion Batteries and Capacitors[J/OL]. Angewandte Chemie International Edition, 2021, 60(31): 17070-17079. DOI:10.1002/anie.202103569. |
| [42] | HU L, CHEN Y, ZHANG Q, et al. Sodium Acetate as Residual-Free Presodiation Additive for Enhancing the Energy Density of Sodium-Ion Batteries[J/OL]. ACS Energy Letters, 2024, 9(3): 1148-1157. DOI:10.1021/acsenergylett.3c02744. |
| [43] | HE W H, GUO Y J, WANG E H, et al. Boosting Sodium Compensation Efficiency via a CNT/MnO2 Catalyst toward High-Performance Na-Ion Batteries[J/OL]. ACS Applied Materials & Interfaces, 2024, 16(15): 18971-18979. DOI:10.1021/acsami.4c02268. |
| [44] | NIU Y B, GUO Y J, YIN Y X, et al. High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries[J/OL]. Advanced Materials, 2020, 32(33): 2001419. DOI:10.1002/adma.202001419. |
| [45] | SUN C, ZHANG X, LI C, et al. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density[J/OL]. Journal of Energy Chemistry, 2022, 64: 442-450. DOI:10.1016/j.jechem.2021.05.010. |
| [46] | CAO J, YE J, LIU J, et al. Bulk-to-interface electronic engineering in organic self-sacrificing additives unlocks high-energy sodium-ion batteries[J/OL]. Nano Energy, 2025, 145: 111476. DOI:https://doi.org/10.1016/j.nanoen.2025.111476. |
| [47] | YANG Z, SHI Q, YU X, et al. High-efficacy multi-sodium carboxylate self-sacrificed additives for high energy density sodium-ion batteries[J/OL]. Energy Storage Materials, 2024, 70: 103511. DOI:10.1016/j.ensm.2024.103511. |
| [48] | LIN X, ZHOU J, LIU J, et al. Electronic Structure Modulation Enables Sodium Compensation in Cathode Organic Additives for Sodium-Ion Batteries[J/OL]. ACS Energy Letters, 2025, 10(2): 798-806. DOI:10.1021/acsenergylett.4c03323. |
| [49] | ZOU K, SONG Z, LIU H, et al. Electronic Effect and Regiochemistry of Substitution in Pre-sodiation Chemistry[J/OL]. The Journal of Physical Chemistry Letters, 2021, 12(49): 11968-11979. DOI:10.1021/acs.jpclett.1c03078. |
| [50] | JO J H, CHOI J U, PARK Y J, et al. New Insight into Ethylenediaminetetraacetic Acid Tetrasodium Salt as a Sacrificing Sodium Ion Source for Sodium-Deficient Cathode Materials for Full Cells[J/OL]. ACS Applied Materials & Interfaces, 2019, 11(6): 5957-5965. DOI:10.1021/acsami.8b18488. |
| [51] | JO J H, CHOI J U, PARK Y J, et al. A new pre-sodiation additive for sodium-ion batteries[J/OL]. Energy Storage Materials, 2020, 32: 281-289. DOI:10.1016/j.ensm.2020.07.002. |
| [52] | 牛玉斌, 林锡涛, 周静, 等. 钠离子电池正极用有机链状补钠剂及其制备方法和正极极片及电池, CN118005524A[P/OL]. 2024-05-10. Niu Y B, Lin X T, Zhou J, et al. Organic Chain Sodium Supplement Agents for Cathodes of Sodium-Ion Batteries, Their Preparation Method, Cathode Plates and Batteries, CN118005524A[P/OL]. 2024-05-10. |
| [53] | FERNÁNDEZ-ROPERO A J, ZARRABEITIA M, BARALDI G, et al. Improved Sodiation Additive and Its Nuances in the Performance Enhancement of Sodium-Ion Batteries[J/OL]. ACS Applied Materials & Interfaces, 2021, 13(10): 11814-11821. DOI:10.1021/acsami.0c20542. |
| [54] | CANAL-RODRÍGUEZ M, ARNAIZ M, MARTIN S, et al. Sodium mesoxalate as pre-sodiation agent for sodium-ion capacitors[J/OL]. Materials Chemistry and Physics, 2025, 335: 130512. DOI:10.1016/j.matchemphys.2025.130512. |
| [55] | ZHANG R, TANG Z, SUN D, et al. Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries[J/OL]. Chemical Communications, 2021, 57(35): 4243-4246. DOI:10.1039/D1CC01292D. |
| [56] | 牛玉斌, 曹俊, 徐茂文. 金属补偿添加剂及其制备方法、金属离子电池正极极片、金属离子电池和电池包. CN118955344A [P/OL]. 2024-11-15. |
| Niu Y B, Cao J, Xu M W. Metal Compensation Additives, Their Preparation Method, Metal Ion Battery Cathode Plates, Metal Ion Batteries and Battery Packs. CN118955344A [P/OL]. 2024-11-15. | |
| [57] | MARTÍNEZ DE ILARDUYA J, OTAEGUI L, GALCERÁN M, et al. Towards high energy density, low cost and safe Na-ion full-cell using P2–Na0.67[Fe0.5Mn0.5]O2 and Na2C4O4 sacrificial salt[J/OL]. Electrochimica Acta, 2019, 321: 134693. DOI:10.1016/j.electacta.2019.134693. |
| [58] | SHANMUKARAJ D, KRETSCHMER K, SAHU T, et al. Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries[J/OL]. ChemSusChem, 2018, 11(18): 3286-3291. DOI:10.1002/cssc.201801099. |
| [59] | PAN X, CHOJNACKA A, BÉGUIN F. Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems[J/OL]. Energy Storage Materials, 2021, 40: 22-30. DOI:10.1016/j.ensm.2021.04.048. |
| [60] | ZOU K, CAI P, TIAN Y, et al. Voltage-Induced High-Efficient In Situ Presodiation Strategy for Sodium Ion Capacitors[J/OL]. Small Methods, 2020, 4(3): 1900763. DOI:10.1002/smtd.201900763. |
| [61] | MARELLI E, MARINO C, BOLLI C, et al. How to overcome Na deficiency in full cell using P2-phase sodium cathode – A proof of concept study of Na-rhodizonate used as sodium reservoir[J/OL]. Journal of Power Sources, 2020, 450: 227617. DOI:10.1016/j.jpowsour.2019.227617. |
| [62] | WU W, HU Z, ZHAO Z, et al. A functional cathode sodium compensation agent for stable sodium-ion batteries[J/OL]. Green Energy & Environment, 2025, 10(1): 173-182. DOI:10.1016/j.gee.2024.02.009. |
| [63] | LU Y, HOU X, MIAO L, et al. Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries[J/OL]. Angewandte Chemie International Edition, 2019, 58(21): 7020-7024. DOI:10.1002/anie.201902185. |
| [1] | 李秀春, 常永刚, 解炜, 李晓明, 陈成猛. 钠离子电池煤基炭负极可控制备:研究进展与展望[J]. 储能科学与技术, 2025, 14(9): 3373-3388. |
| [2] | 储玉喜, 马畅, 陈红光, 张少禹, 卓萍. 180 Ah钠离子电池热失控与产气特性分析[J]. 储能科学与技术, 2025, 14(9): 3611-3618. |
| [3] | 向靖宇, 钟伟, 程时杰, 谢佳. 助力钠电池储能:预钠化技术研究新进展[J]. 储能科学与技术, 2025, 14(8): 3051-3064. |
| [4] | 刘德帅, 朱慧琴, 孙睿浩, 李蒙, 巩文豪, 李晓辉, 钱伟伟. 双添加剂协同提升钠离子电池循环稳定性[J]. 储能科学与技术, 2025, 14(5): 1858-1865. |
| [5] | 李昱, 李丹丹, 谢飞, 唐彬, 容晓晖, 梁沁沁, 胡勇胜. 钠离子电池正极预钠化技术进展[J]. 储能科学与技术, 2025, 14(5): 1748-1757. |
| [6] | 唐从庆, 蔡京升. 补钠技术在钠离子电池中的应用进展[J]. 储能科学与技术, 2025, 14(5): 1884-1899. |
| [7] | 单福星, 霍海波, 张铮, 渐彬彬, 陈军. 钠离子电池的阶梯充电策略及优化[J]. 储能科学与技术, 2025, 14(4): 1668-1678. |
| [8] | 安仲勋, 梁鹏程, 杨重阳. 不同预钠化比例对AC//HC型钠离子电容器的性能影响[J]. 储能科学与技术, 2025, 14(4): 1679-1686. |
| [9] | 闻有为, 滕安琪, 李勇琦, 田佳敏, 丁康杰, 段强领, 王青松. 不同放电倍率下钠离子电池的电性能与产热行为研究[J]. 储能科学与技术, 2025, 14(4): 1687-1697. |
| [10] | 李勇琦, 李志远, 闻有为, 王成东, 段强领, 王青松. 大容量钠离子电池热失控特性实验研究[J]. 储能科学与技术, 2025, 14(4): 1657-1667. |
| [11] | 王蕾, 刘少冕, 范凤兰, 杨子腾. 速生木基钠离子电池硬碳负极构效关系[J]. 储能科学与技术, 2025, 14(3): 1107-1114. |
| [12] | 陈钊, 梁沁沁, 李玉婷, 谢飞, 唐彬, 李建新, 陆雅翔, 陈爱兵, 胡勇胜. 钠离子电池锡基合金类负极材料研究进展[J]. 储能科学与技术, 2025, 14(3): 883-897. |
| [13] | 潘美玲, 孙楠楠, 赵志超. 二维VC2作为钠离子电池负极材料的理论研究[J]. 储能科学与技术, 2025, 14(2): 497-504. |
| [14] | 王阳峰, 侯佳傲, 朱紫宸, 所聪, 侯栓弟. 钠离子电池硬碳闭孔结构研究进展[J]. 储能科学与技术, 2025, 14(2): 555-569. |
| [15] | 常永刚, 张晋豪, 解炜, 李秀春, 王毅林, 陈成猛. 钠离子电池硬碳负极容量提升策略研究进展[J]. 储能科学与技术, 2025, 14(2): 544-554. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||