• 储能XXXX •
高明娟1,2(
), 宋国良1,2(
), 宋维健1, 刘敬樟1
收稿日期:2025-10-22
修回日期:2025-11-13
出版日期:2025-11-17
通讯作者:
宋国良
E-mail:gaomingjuan@iet.cn;songgl@iet.cn
作者简介:高明娟(2002—),女,硕士研究生,研究方向为高温烟气加热固体颗粒储热技术,E-mail:gaomingjuan@iet.cn;
基金资助:
Mingjuan GAO1,2(
), Guoliang SONG1,2(
), Weijian SONG1, Jingzhang LIU1
Received:2025-10-22
Revised:2025-11-13
Online:2025-11-17
Contact:
Guoliang SONG
E-mail:gaomingjuan@iet.cn;songgl@iet.cn
摘要:
我国工业余热资源丰富,但余热利用率较低。热能储存(thermal energy storage, TES)技术通过解耦热源与热利用/转换过程,成为提升余热回收效率的关键手段,而固体颗粒储热凭借高温适应性广、循环稳定性强、成本低等优势,在TES系统中应用广泛,尤其在高温烟气加热场景下更具竞争力。本文基于近期国内外相关文献调研,聚焦以高温烟气为热源、固体颗粒为储热介质的储热技术。首先,阐述了工业余热的来源和利用方式,分析了高温烟气加热固体颗粒储热技术原理,并给出系统评价指标。其次,结合高温烟气加热固体颗粒储热技术研究进展,包括储热材料的筛选与性能表征和填充床、移动床、流化床等储热装置设计以及各自的优缺点、适用场景,并总结了国内外相关的应用实践。然后,深入剖析了该技术在换热效率提升、颗粒磨损与积灰、系统优化控制等应用方面面临的挑战。最后,展望了在新型储热材料研发、换热结构优化、智能控制技术融合等方面的未来发展方向,旨在为工业余热利用技术的应用推动和能源系统的低碳转型提供理论依据和技术支撑。
中图分类号:
高明娟, 宋国良, 宋维健, 刘敬樟. 高温烟气加热固体颗粒储热技术研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0943.
Mingjuan GAO, Guoliang SONG, Weijian SONG, Jingzhang LIU. Research progress on high-temperature flue gas heating solid particle thermal energy storage technology[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0943.
表2
常见固体材料的热物理性质"
| 材料 | 温度(℃) | 密度(kg/m3) | 比热容(kJ/(kg·K)) | 热导率(W/(m·K)) | 体积热容(kJ/(m3·K)) |
|---|---|---|---|---|---|
| 混凝土 | 350 | 2250 | 1.01 | 1.23 | 2272.5 |
| 花岗岩 | 20 | 2750 | 0.89 | 2.9 | 2447.5 |
| 玄武岩 | 20 | 2768 | 0.85 | 2.1 | 2352.8 |
| 石灰岩 | 20 | 2600 | 0.81 | 2.2 | 2106 |
| 硅基耐火材料 | 20 | 2340 | 0.86 | 1.75 | 2012.4 |
| 沙子(SiO2) | 20 | 1454 | 0.76 | 0.25 | 1105.04 |
| 600 | 1454 | 1.2 | 0.48 | 1744.8 | |
| 矿渣 | 20 | 2700 | 0.84 | 0.57 | 2268 |
| 可浇注陶瓷 | 20 | 3500 | 0.86 | 1.4 | 3010 |
| 氧化铝 | 20 | 3984 | 0.76 | 33.4 | 3027.84 |
| 岩盐(Halite) | 20 | 2170 | 0.88 | 6.1 | 1909.6 |
| 氯化钠 | 20 | 2165 | 0.86 | 6.5 | 1861.9 |
| 碳化硅(SiC) | 20 | 3220 | 1.15 | 83 | 3703 |
表3
固体颗粒储热材料性能对比"
| 材料 | 密度 (kg/m3) | 比热容 (kJ/(kg·K)) | 热导率 (W/(m·K)) | 体积热容 (kJ/(m3·K)) | 最高使用温度(℃) | 成本 (美元/吨) | 主要优缺点 |
|---|---|---|---|---|---|---|---|
| 玄武岩 | 2768 | 0.85 | 2.1 | 2352.8 | 700 | 126 | 成本较低、中低温下稳定、热导率较低 |
| 硅砂(SiO2) | 1454 | 1.2 | 0.48 | 1744.8 | 1200 | 30-40 | 温域宽、成本低、热导率低 |
| 钢渣 | 3430 | 0.877 | 1.46 | 3008 | ≥700 | 负成本 | 成本极低、固废利用、热导率较低,成分波动 |
| 氧化铝 | 3984 | 0.76 | 33.4 | 3027.84 | 1100-1200 | 1596.8 | 热导率较高、高温稳定、成本高 |
| 碳化硅(SiC) | 3220 | 1.15 | 83 | 3703 | 1400 | 极高 | 热导率和体积热容高、成本极高 |
玻璃化石棉废物 Cofalit® | 3120 | 0.9-0.964 | 1.49-1.55 | 2800-3000 | 1200 | 12 | 成本极低、动态热响应好、长期稳定性待研究 |
回收陶瓷 (ReThinkSeramic-Flora) | 2350-2400 | 1.1 | 2.2 | 2585-2640 | 1200 | 较低 | 成本较低、环境可持续、高温耐受能力强、热导率较低 |
表4
烟气-颗粒换热器特点"
| 类型 | 优点 | 缺点 | 适用场景 |
|---|---|---|---|
| 填充床换热器 | 结构简单、成本低、 技术成熟,颗粒磨损小 | 体积庞大、换热性能差、难以平衡传热和压降、热响应速度慢 | 宽温域储热、低成本需求 |
| 移动床直接接触换热器 | 重力驱动、结构简单、 成本低、传热系数高 | 存在颗粒夹带问题、局部颗粒 换热不均匀、难以工业放大 | 中高温、含尘、易腐蚀烟气 |
| 移动床管壳式换热器 | 重力驱动、传热系数高、不存在工质污染风险、结构紧凑 | 管道顶部颗粒的停滞区和底部的 空隙区影响换热,成本较高 | 高温储热、无污染要求场景 |
| 移动床板壳式换热器 | 重力驱动、传热系数高、 结构紧凑且设计灵活 | 压降增加、易堵塞、 制造与维护复杂性增加 | 对工作温度、系统可靠性和 换热效率有极高要求 |
| 流化床换热器 | 技术成熟、传热系数高、 颗粒储热提升一体化 | 不可逆损失大、流化风能量损失、 颗粒夹带与磨损 | 中高温储热、高传热、 高气速、高固含率系统 |
| 回转窑换热器 | 结构紧凑、处理量大、 运行稳定性较高 | 局部换热不均、能耗与维护 成本较高、传热性能受限 | 高温、长停留时间、良好物料混合和高效热交换的固体处理过程 |
| [1] | 国家统计局. 中国统计年鉴2024[M]. 2024年版. 北京: 中国统计出版社, 2024: 1. DOI: 10.40049/y.cnki.yinfn.2024.000001. |
| National Bureau of Statistics of China. China statistical yearbook2024[M]. 2024th ed. Beijing: China Statistics Press, 2024: 1. DOI: 10.40049/y.cnki.yinfn.2024.000001. | |
| [2] | 姚远, 陆振能, 曲勇, 等. 面向工业应用场景的超高温蒸汽热泵研究进展[J]. 新能源进展, 2025, 13(01): 39-50. DOI: 10.3969/j.issn.2095-560X.2025.01.006. |
| YAO Y, LU Z N, QU Y, et al. Research progress on ultra-high temperature steam heat pumps for industrial application[J]. Advances in New and Renewable Energy, 2025, 13(01): 39-50. DOI: 10.3969/j.issn.2095-560X.2025.01.006. | |
| [3] | MIRÓ L, GASIA J, CABEZA L F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review[J]. Applied Energy, 2016, 179: 284-301. DOI: 10.1016/j.apenergy.2016.06.147. |
| [4] | THEKDI A, NIMBALKAR S U. Industrial waste heat recovery-potential applications, available technologies and crosscutting r&d opportunities[R]. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2015. DOI: 10.2172/1185778. |
| [5] | ONONOGBO C, NWOSU E C, NWAKUBA N R, et al. Opportunities of waste heat recovery from various sources: Review of technologies and implementation[J]. Heliyon, 2023, 9(2): e13590. DOI: 10.1016/j.heliyon.2023.e13590. |
| [6] | CHRISTODOULIDES P, AGATHOKLEOUS R, ARESTI L, et al. Waste heat recovery technologies revisited with emphasis on new solutions, including heat pipes, and case studies[J]. Energies, 2022, 15(1): 384. DOI: 10.3390/en15010384. |
| [7] | NYAKUMA B B, MAHYON N I, CHIONG M S, et al. Recovery and utilisation of waste heat from flue/exhaust gases: a bibliometric analysis (2010-2022)[J]. Environmental Science and Pollution Research, 2023, 30(39): 90522-90546. DOI: 10.1007/s11356-023-28791-4. |
| [8] | 陈晓庆. 转炉高温烟气石灰石粉分解特性及实验研究[D]. 武汉: 武汉科技大学, 2023. DOI: 10.27380/d.cnki.gwkju.2023.000131. |
| CHEN X Q. Decomposition characteristics and experimental study of limestone powder in converter high temperature flue gas[D]. Wuhan: Wuhan University of Science and Technology, 2023. DOI: 10.27380/d.cnki.gwkju.2023.000131. | |
| [9] | 路哲. 我国工业余热回收利用技术现状分析[J]. 装备制造技术, 2019, (12): 204-206. DOI: 10.3969/j.issn.1672-545X.2019.12.055. |
| LU Z. Analysis on current situation of industrial waste heat recovery in China[J]. Equipment Manufacturing Technology, 2019, (12): 204-206. DOI: 10.3969/j.issn.1672-545X.2019.12.055. | |
| [10] | 王慧博, 王敏, 邢立东. 转炉烟气余热回收利用技术现状及展望[J]. 钢铁研究学报, 2024, 36(12): 1499-1509. DOI: 10.13228/j.boyuan.issn1001-0963.20240179. |
| WANG H B, WANG M, XING L D. Current status and prospects of waste heat recovery of converter flue[J]. Journal of Iron and Steel Research, 2024, 36(12): 1499-1509. DOI: 10.13228/j.boyuan.issn1001-0963.20240179. | |
| [11] | 国家发展改革委. 关于印发«钢铁行业节能降碳专项行动计划»的通知(发改环资〔2024〕730号)[EB/OL]. [2024-06-07]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202406/t20240607_1386774.html. |
| National Development and Reform Commission. Notice on Issuing the Special Action Plan for Energy Conservation and Carbon Reduction in the Iron and Steel Industry (Development and Reform Commission Circular〔2024〕No.730)[EB/OL]. [2024-06-07]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202406/t20240607_1386774.html. | |
| [12] | OYEDEPO S O, FAKEYE B A. Waste heat recovery technologies pathway to sustainable energy development[J]. Journal of Thermal Engineering, 2021, 7(1): 324-348. DOI: 10.18186/thermal.850796. |
| [13] | 何雅玲. 工业余热高效综合利用的重大共性基础问题研究[J]. 科学通报, 2016, 61(17): 1856-1857. DOI: 10.1360/zk2016-61-17-1856. |
| HE Y L. Research on major fundamental issues for efficient comprehensive utilization of industrial waste heat[J]. Chinese Science Bulletin, 2016, 61(17): 1856-1857. DOI: 10.1360/zk2016-61-17-1856. | |
| [14] | ERMIŞ K, FINDIK F. Thermal energy storage[J]. Sustainable Engineering and Innovation, 2020, 2(2): 66-88. DOI: 10.37868/sei.v2i2.115. |
| [15] | JI Z C, SONG G L, TANG Z H, et al. Effect of air distribution on the transport characteristics of solid particles in the thermal storage and release system of circulating fluidized bed[J]. Journal of Thermal Science, 2024, 33(04): 1554-1563. DOI: 10.1007/s11630-024-1902-7. |
| [16] | BAUER T. Fundamentals of high-temperature thermal energy storage, transfer, and conversion[M]//Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion. Woodhead Publishing, 2021: 1-34. DOI: 10.1016/B978-0-12-819955-8.00001-6. |
| [17] | 张晨曦, 王泽众, 谢劲超, 等. 电加热在高温固体颗粒储热中的应用[J]. 工业加热, 2025, 54(04): 1-10+25. DOI: 10.3969/j.issn.1002-1639.2025.04.001. |
| ZHANG C X, WANG Z Z, XIE J C, et al. Applications of electro-thermal conversions in high-temperature solid-particle thermal energy storage[J]. Industrial Heating, 2025, 54(04): 1-10+25. DOI: 10.3969/j.issn.1002-1639.2025.04.001. | |
| [18] | ZENG G, HOU S J, GUO Q K, et al. Advances in solid particle thermal energy storage: a comprehensive review[J]. Sustainability, 2025, 17(16): 7244. DOI: 10.3390/su17167244. |
| [19] | GEORGOUSIS N, DIRIKEN J, SPEETJENS M, et al. Comprehensive review on packed-bed sensible heat storage systems[J]. Journal of Energy Storage, 2025, 121: 116516. DOI: 10.1016/j.est.2025.116516. |
| [20] | SCHWARZMAYR P, BIRKELBACH F, WALTER H, et al. Standby efficiency and thermocline degradation of a packed bed thermal energy storage: An experimental study[J]. Applied Energy, 2023, 337: 120917. DOI: 10.1016/j.apenergy.2023.120917. |
| [21] | MA Z, MEHOS M, GLATZMAIER G, et al. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage[J]. Energy Procedia, 2015, 69: 1349-1359. DOI: 10.1016/j.egypro.2015.03.136. |
| [22] | 邓升安, 楼国锋, 徐科珺, 等. 移动床固体颗粒绕流顺排圆管的过程[J]. 工程科学学报, 2018, 40(6): 735-742. DOI: 10.13374/j.issn2095-9389.2018.06.012. |
| DENG S A, LOU G F, XU K J, et al. Particles flowing process across aligned tubes in a moving bed[J]. Chinese Journal of Engineering, 2018, 40(6): 735-742. DOI: 10.13374/j.issn2095-9389.2018.06.012. | |
| [23] | 张宇, 刘文仲, 刘小芳. 翅片管换热器内烟气对流换热模拟研究[J]. 安徽工业大学学报(自然科学版), 2024, 41(02): 189-194. DOI: 10.12415/j.issn.1671-7872.23065. |
| ZHANG Y, LIU W Z, LIU X F. Simulation study on convective heat transfer of flue gas in fin-and-tube heat exchangers[J]. Journal of Anhui University of Technology(Natural Science), 2024, 41(02): 189-194. DOI: 10.12415/j.issn.1671-7872.23065. | |
| [24] | ALI H M, REHMAN T-U, ARICI M, et al. Advances in thermal energy storage: Fundamentals and applications[J]. Progress in Energy and Combustion Science, 2024, 100: 101109. DOI: 10.1016/j.pecs.2023.101109. |
| [25] | XIONG Y X, HE M, WU Y T, et al. A comprehensive review on the utilization of industrial solid waste in thermal energy storage field[J]. Solar Energy Materials and Solar Cells, 2025, 285: 113562. DOI: 10.1016/j.solmat.2025.113562. |
| [26] | JURCZYK M, SPIETZ T, CZARDYBON A, et al. Review of thermal energy storage materials for application in large-scale integrated energy systems—methodology for matching heat storage solutions for given applications[J]. Energies, 2024, 17(14): 3544. DOI: 10.3390/en17143544. |
| [27] | 冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(05): 1058-1075. DOI: 10.12028/j.issn.2095-4239.2017.00094. |
| LENG G H, CAO H, PENG H, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(05): 1058-1075. DOI: 10.12028/j.issn.2095-4239.2017.00094. | |
| [28] | TISKATINE R, OADDI R, AIT EL CADI R, et al. Suitability and characteristics of rocks for sensible heat storage in CSP plants[J]. Solar Energy Materials and Solar Cells, 2017, 169: 245-257. DOI: 10.1016/j.solmat.2017.05.033.[29] KRÜGER M, HAUNSTETTER J, KNÖDLER P, et al. Slag as an inventory material for heat storage in a concentrated solar tower power plant: design studies and systematic comparative assessment[J]. Applied Sciences, 2019, 9(9): 1833. DOI: 10.3390/app9091833. |
| [30] | 翟茂林, 王伟, 吴玉庭, 等. 混凝土和混凝土-熔盐两种蓄热结构蓄热过程的对比分析[J/OL]. 可持续能源, 2020, 10(1): 1-16[2020-04-27]. https://www.hanspub.org/journal/paperinformation?paperid=35291. DOI: 10.12677/SE.2020.101001. |
| ZHAI M L, WANG W, WU Y T, et al. Comparative analysis of heat storage processes of concrete and concrete-molten salt heat storage structures[J/OL]. Sustainable Energy, 2020, 10(1): 1-16[2020-04-27]. https://www.hanspub.org/journal/PaperInformation?paperID=35291. DOI: 10.12677/SE.2020.101001. | |
| [31] | LAING-NEPUSTIL D, ZUNFT S. Using concrete and other solid storage media in thermal energy storage systems[M]//Advances in Thermal Energy Storage Systems. Woodhead Publishing. 2021: 83-110. DOI: 10.1016/b978-0-12-819885-8.00004-8. |
| [32] | ALVA G, LIU L K, HUANG X, et al. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 693-706. DOI: 10.1016/j.rser.2016.10.021.[33] XU R T, ZHANG C C, WANG G Q, et al. Molten salt stress corrosion of metal alloys - An updated review[J]. Solar Energy Materials and Solar Cells, 2025, 282: 113379. DOI: 10.1016/j.solmat.2024.113379. |
| [34] | 高松. 熔盐储热技术应用浅析 [J]. 机电信息, 2025, (07): 86-88. DOI: 10.19514/j.cnki.cn32-1628/tm.2025.07.022. |
| GAO S. A brief analysis of molten salt thermal energy storage technology applications[J]. Mechanical and Electrical Information, 2025, (07): 86-88. DOI: 10.19514/j.cnki.cn32-1628/tm.2025.07.022. | |
| [35] | DAVENPORT P, MA Z W, SCHIRCK J, et al. Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems[J]. Solar Energy, 2023, 262: 111908. DOI: 10.1016/j.solener.2023.111908.[36] MA Z W, GIFFORD J, WANG X C, et al. Electric-thermal energy storage using solid particles as storage media[J]. Joule, 2023, 7(5): 843-848. DOI: 10.1016/j.joule.2023.03.016. |
| [37] | 陶志强, 赵庆, 唐豪杰, 等. 应用于工业余热的超临界二氧化碳布雷顿循环系统的热力学和㶲分析[J]. 中国电机工程学报, 2019, 39(23): 6944-6951+7107. DOI: 10.13334/j.0258-8013.pcsee.190204. |
| TAO Z Q, ZHAO Q, TANG H J, et al. Thermodynamic and exergetic analysis of supercritical carbon dioxide brayton cycle system applied to industrial waste heat recovery[J]. Proceedings of the CSEE, 2019, 39(23): 6944-6951+7107. DOI: 10.13334/j.0258-8013.pcsee.190204. | |
| [38] | 周展民. 固体颗粒高温储热系统组件储热特性与数值模拟研究[D]. 武汉: 华中科技大学, 2024. DOI: 10.27157/d.cnki.ghzku.2024.005589. |
| ZHOU Z M. Thermal storage characteristics and numerical simulation study of components in high-temperature solid particle thermal storage systems[D]. Wuhan: Huazhong University of Science and Technology, 2024. DOI: 10.27157/d.cnki.ghzku.2024.005589.[39] 赵港归, 周月桂. 高温固体颗粒填充床储热特性数值研究[J]. 热能动力工程, 2024, 39(06): 131-138. DOI: 10.16146/j.cnki.rndlgc.2024.06.016. | |
| ZHAO G G, ZHOU Y G. Numerical study on heat storage characteristics of high temperature solid particle packed bed[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(06): 131-138. DOI: 10.16146/j.cnki.rndlgc.2024.06.016.[40] ORTEGA-FERNÁNDEZ I, RODRÍGUEZ-ASEGUINOLAZA J. Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project[J]. Applied Energy, 2019, 237: 708-719. DOI: 10.1016/j.apenergy.2019.01.007. | |
| [41] | YIN S W, XUE F Y, WANG X, et al. Heat transfer characteristics of high-temperature dusty flue gas from industrial furnaces in a granular bed with buried tubes[J]. Energies, 2020, 13(14): 3589. DOI: 10.3390/en13143589. |
| [42] | AMIRI L, ERMAGAN H, KURNIA J C, et al. Progress on rock thermal energy storage (RTES): A state of the art review[J]. Energy Science & Engineering, 2023, 12(2): 410-437. DOI: 10.1002/ese3.1478. |
| [43] | HAO J W, QIAO L, LIU Z Y, et al. Effect of thermal treatment on physical and mechanical properties of sandstone for thermal energy storage: a comprehensive experimental study[J]. Acta Geotechnica, 2022, 17(9): 3887-3908. DOI: 10.1007/s11440-022-01514-8. |
| [44] | SOPRANI S, MARONGIU F, CHRISTENSEN L, et al. Design and testing of a horizontal rock bed for high temperature thermal energy storage[J]. Applied Energy, 2019, 251: 113345. DOI: 10.1016/j.apenergy.2019.113345. |
| [45] | SCHLIPF D, SCHICKTANZ P, MAIER H, et al. Using sand and other small grained materials as heat storage medium in a packed bed HTTESS[J]. Energy Procedia, 2015, 69: 1029-1038. DOI: 10.1016/j.egypro.2015.03.202.[46] ANDERSON R, BATES L, JOHNSON E, et al. Packed bed thermal energy storage: A simplified experimentally validated model[J]. Journal of Energy Storage, 2015, 4: 14-23. DOI: 10.1016/j.est.2015.08.007. |
| [47] | PALACIOS A, CALDERÓN A, BARRENECHE C, et al. Study on solar absorptance and thermal stability of solid particles materials used as TES at high temperature on different aging stages for CSP applications[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110088. DOI: 10.1016/j.solmat.2019.110088. |
| [48] | KEILANY M A, MILHÉ M, BÉZIAN J J, et al. Experimental evaluation of vitrified waste as solid fillers used in thermocline thermal energy storage with parametric analysis[J]. Journal of Energy Storage, 2020, 29: 101285. DOI: 10.1016/j.est.2020.101285. |
| [49] | AL-AZAWII M M S, ALHAMDI S F H, BRAUN S, et al. Thermocline in packed bed thermal energy storage during charge-discharge cycle using recycled ceramic materials - Commercial scale designs at high temperature[J]. Journal of Energy Storage, 2023, 64: 107209. DOI: 10.1016/j.est.2023.107209. |
| [50] | KAKI P, POPURI A K. Evolution of Nusselt correlation for recovery of waste heat from industry flue gases using quarry dust and iron ore particles[J]. Journal of The Institution of Engineers (India): Series D, 2022, 104(1): 205-212. DOI: 10.1007/s40033-022-00375-5. |
| [51] | ZHENG N, LIU H, FANG J B, et al. Numerical investigation of bed-to-tube heat transfer in a shallow fluidized bed containing mixed-size particles[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124252. DOI: 10.1016/j.ijheatmasstransfer.2023.124252. |
| [52] | TIAN X, GUO Z G, JIA H N, et al. Numerical investigation of a new type tube for shell-and-tube moving packed bed heat exchanger[J]. Powder Technology, 2021, 394: 584-596. DOI: 10.1016/j.powtec.2021.08.080. |
| [53] | LE ROUX D, LALAU Y, REBOUILLAT B, et al. Thermocline thermal energy storage optimisation combining exergy and life cycle assessment[J]. Energy Conversion and Management, 2021, 248: 114787. DOI: 10.1016/j.enconman.2021.114787. |
| [54] | FANG W C, CHEN S, SHI S. Dynamic characteristics and real-time control of a particle-to-sCO2 moving bed heat exchanger assisted by BP neural network[J]. Energy, 2022, 256: 124597. DOI: 10.1016/j.energy.2022.124597. |
| [55] | MEHRAJ N, MATEU C, CABEZA L F. Artificial intelligence and thermal energy storage: A review of design techniques and applications[J]. Journal of Energy Storage, 2025, 124: 116870. DOI: 10.1016/j.est.2025.116870. |
| [56] | SCHWARZMAYR P, BIRKELBACH F, WALTER H, et al. Packed bed thermal energy storage for waste heat recovery in the iron and steel industry: A cold model study on powder hold-up and pressure drop[J]. Journal of Energy Storage, 2024, 75: 109735. DOI: 10.1016/j.est.2023.109735.[57] SCHWARZMAYR P, BIRKELBACH F, WALTER H, et al. Exergy efficiency and thermocline degradation of a packed bed thermal energy storage in partial cycle operation: An experimental study[J]. Applied Energy, 2024, 360: 122895. DOI: 10.1016/j.apenergy.2024.122895. |
| [58] | GEORGOUSIS N, DIRIKEN J, SPEETJENS M, et al. System configurations for shuttle kiln waste heat recovery: comparing and combining a packed-bed thermal storage system and a heat exchanger[J]. Applied Thermal Engineering, 2025, 278: 127124. DOI: 10.1016/j.applthermaleng.2025.127124. |
| [59] | 吴冰洁. 工业炉烟气余热回收利用探究[J]. 中国设备工程, 2025, (06): 97-99. DOI: 10.3969/j.issn.1671-0711.2025.06.040. |
| WU B J. Investigation into waste heat recovery from industrial furnace flue gases[J]. China Plant Engineering, 2025, (06): 97-99. DOI: 10.3969/j.issn.1671-0711.2025.06.040. | |
| [60] | 何雅玲, 汤松臻, 王飞龙, 等. 中低温烟气换热器气侧积灰、磨损及腐蚀的研究[J]. 科学通报, 2016, 61(17): 1858-1876. DOI: 10.1360/N972016-00248. |
| HE Y L, TANG S Z, WANG F L, et al. Gas-side fouling, erosion and corrosion of heat exchanger for middle and low temperature flue gas waste heat recovery (in Chinese)[J]. Chinese Science Bulletin, 2016, 61(17): 1858-1876. DOI: 10.1360/N972016-00248. | |
| [61] | 睢辉, 屈晓航, 刘永启, 等. 基于循环分散和集中固体载热颗粒的烟气余热回收装置和工艺: CN111271998A[P]. 2020-06-12. |
| JU H, QU X H, LIU Y Q, et al. Flue gas waste heat recovery device and process based on cyclic dispersion and concentration of solid heat-carrying particles: CN111271998A[P]. 2020-06-12. | |
| [62] | POPURI A K, GARIMELLA P. Heat transfer studies in a laboratory vertical riser system suitable for waste heat recovery from industrial waste exhaust gases[J]. Chemical Engineering Communications, 2020, 207(11): 1616-1623. DOI: 10.1080/00986445.2019.1708739. |
| [63] | TREVISAN S, GUEDEZ R. Design optimization of an innovative layered radial-flow high-temperature packed bed thermal energy storage[J]. Journal of Energy Storage, 2024, 83: 110767. DOI: 10.1016/j.est.2024.110767.[64] ALAQEL S, EL-LEATHY A, AL-ANSARY H, et al. Experimental investigation of the performance of a shell-and-tube particle-to-air heat exchanger[J]. Solar Energy, 2020, 204: 561-568. DOI: 10.1016/j.solener.2020.04.062. |
| [65] | ALBRECHT K J, HO C K. Design and operating considerations for a shell-and-plate, moving packed-bed, particle-to-sCO2 heat exchanger[J]. Solar Energy, 2019, 178: 331-340. DOI: 10.1016/j.solener.2018.11.065. |
| [66] | CHENG Z L, TAN Z T, GUO Z G, et al. Technologies and fundamentals of waste heat recovery from high-temperature solid granular materials[J]. Applied Thermal Engineering, 2020, 179: 115703. DOI: 10.1016/j.applthermaleng.2020.115703. |
| [67] | 田兴, 张家悦, 郭志罡, 等. 颗粒外掠含不同掺混单元平板的流动换热特性[J]. 化工学报, 2022, 73(11): 4884-4892. DOI: 10.11949/0438-1157.20221011. |
| TIAN X, ZHANG J Y, GUO Z G, et al. Flow and heat transfer characteristics of particles flowing along the plate with different mixing elements[J]. CIESC Journal, 2022, 73(11): 4884-4892. DOI: 10.11949/0438-1157.20221011. | |
| [68] | ZHENG H B, LIU X L, FLAMANT G. Design of reactive particle fluidized bed heat exchangers for gas–solid thermochemical energy storage[J]. Chemical Engineering Journal, 2024, 489: 151305. DOI: 10.1016/j.cej.2024.151305. |
| [69] | JIAN Q S, GU H L, WANG K G, et al. Numerical study of particle behaviours and heat transfer in a complex rotary kiln[J]. Particuology, 2024, 92: 81-94. DOI: 10.1016/j.partic.2024.04.004. |
| [70] | TANG S Z, HE Y L, WANG F L, et al. On-site experimental study on fouling and heat transfer characteristics of flue gas heat exchanger for waste heat recovery[J]. Fuel, 2021, 296: 120532. DOI: 10.1016/j.fuel.2021.120532. |
| [71] | TIAN K, GUO Z F, MA T, et al. Numerical investigation on ash accumulation characteristics of serrated spiral finned tube heat exchanger in waste heat utilization[J]. Applied Thermal Engineering, 2024, 250: 123512. DOI: 10.1016/j.applthermaleng.2024.123512. |
| [72] | TOUZO A, OLIVES R, DEJEAN G, et al. Experimental and numerical analysis of a packed-bed thermal energy storage system designed to recover high temperature waste heat: an industrial scale up[J]. Journal of Energy Storage, 2020, 32: 101894. DOI: 10.1016/j.est.2020.101894. |
| [73] | SALEH N S, ALAQEL S, DJAJADIWINATA E, et al. Experimental investigation of a moving packed-bed heat exchanger suitable for concentrating solar power applications[J]. Applied Sciences, 2022, 12(8): 4055. DOI: 10.3390/app12084055. |
| [74] | 清华大学碳中和研究院. 清华大学合作研究团队MWh级高温固体颗粒储热中试装置开车成功[EB/OL]. [2025-07-11]. https://www.icon.tsinghua.edu.cn/info/1066/1828.htm. |
| Institute for Carbon Neutrality. Tsinghua University. Tsinghua University collaborative research team successfully commences operation of MWh-scale high-temperature solid particle thermal energy storage pilot plant[EB/OL]. [2025-07-11]. https://www.icon.tsinghua.edu.cn/info/1066/1828.htm. |
| [1] | 陈久林, 薛晓迪, 王丽, 邢至珏. 基于中高温烟气余热回收的固体显热储热装置热性能实验研究[J]. 储能科学与技术, 2025, 14(8): 3185-3193. |
| [2] | 冯军胜, 严亚茹, 王璐, 赵亮, 董辉. 耦合低温余热的HP-ORC热泵储电系统热经济性能研究[J]. 储能科学与技术, 2025, 14(5): 2130-2140. |
| [3] | 谭鋆, 丁若晨, 周晓宇, 蔺新星, 苏文, 徐波, 吴宏. 液冷数据中心余热驱动的“热泵-跨临界CO2 发电”卡诺电池热力性能分析[J]. 储能科学与技术, 2025, 14(4): 1471-1480. |
| [4] | 冯军胜, 严亚茹, 王璐, 赵亮, 董辉. 耦合低温余热回收的热泵储电系统热力学性能研究[J]. 储能科学与技术, 2024, 13(12): 4384-4395. |
| [5] | 冯军胜, 严亚茹, 赵亮, 董辉. 基于有机朗肯循环的卡诺电池热储能系统性能分析[J]. 储能科学与技术, 2024, 13(11): 3930-3938. |
| [6] | 张岩岩, 熊亚选, 陈亚辉, 全瑞星, 程广贵, 赵彦琦, 丁玉龙. 相变填充床储热系统研究与应用进展[J]. 储能科学与技术, 2023, 12(12): 3852-3872. |
| [7] | 姜竹, 邹博杨, 丛琳, 谢春萍, 李传, 谯耕, 赵彦琦, 聂彬剑, 张童童, 葛志伟, 马鸿坤, 金翼, 李永亮, 丁玉龙. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
| [8] | 孙守斌, 姚华, 刘常鹏, 黄云, 马光宇, 张天赋, 王向锋. 钢铁行业中低温烟气余热相变储热装置特性分析[J]. 储能科学与技术, 2020, 9(3): 730-734. |
| [9] | 凌浩恕, 何京东, 徐玉杰, 王亮, 陈海生. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(3): 861-868. |
| [10] | 冷光辉1,2,8,曹 惠1,彭 浩3,常 春4,熊亚选5,姜 竹1,丛 琳1,赵彦琦1,张 赣1,谯 耕6,张叶龙7,许 永7,赵伟杰7,丁玉龙. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075. |
| [11] | 赵亮, 王海洋, 方向晨, 王刚, 徐宏. 改性粉煤灰相变储能材料在余热回收中的应用[J]. 储能科学与技术, 2013, 2(6): 598-602. |
| [12] | 张国才1,2,3,徐 哲1,陈运法2,李建强1. 金属基相变材料的研究进展及应用[J]. 储能科学与技术, 2012, 1(1): 74-81. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||