储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4065-4084.doi: 10.19799/j.cnki.2095-4239.2025.0960
• 热点点评 • 下一篇
孙蔷馥1(
), 岑官骏1, 乔荣涵1, 刘长洋1, 郝峻丰1, 张新新1, 郑博文1, 谷宇皓1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2(
)
收稿日期:2025-10-24
出版日期:2025-11-28
发布日期:2025-11-24
通讯作者:
黄学杰
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:孙蔷馥(2000—),女,博士研究生,研究方向为锂离子电池,E-mail:sunqiangfu22@mails.ucas.ac.cn;
Qiangfu SUN1(
), Guanjun CEN1, Ronghan QIAO1, Changyang LIU1, Junfeng HAO1, Xinxin ZHANG1, Bowen ZHENG1, Yuhao GU1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2(
)
Received:2025-10-24
Online:2025-11-28
Published:2025-11-24
Contact:
Xuejie HUANG
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年8月1日至2025年9月30日上线的锂电池研究论文,共有7082篇,本文选择其中100篇加以评论。正极材料的研究集中于高镍三元的掺杂改性和表面包覆,以及富锂锰基材料的结构设计等。负极材料的研究重点包括硅基负极材料制备优化、金属锂负极的制备以及界面构筑与调控。固态电解质的研究主要包括硫化物固态电解质、氯化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛关注。电池工艺技术方面的研究包括干法电极、黏结剂设计以及开发新型电池技术等。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作包括电解液结构预测以及锂沉积和界面形成机制。
中图分类号:
孙蔷馥, 岑官骏, 乔荣涵, 刘长洋, 郝峻丰, 张新新, 郑博文, 谷宇皓, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.8.1—2025.9.30)[J]. 储能科学与技术, 2025, 14(11): 4065-4084.
Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Changyang LIU, Junfeng HAO, Xinxin ZHANG, Bowen ZHENG, Yuhao GU, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2025 to Sep. 30, 2025)[J]. Energy Storage Science and Technology, 2025, 14(11): 4065-4084.
| [1] | LIAO H Y, TANG Y F, MA W Q, et al. Exceptional layered cathode stability at 4.8 V via supersaturated high-valence cation design[J]. Nature Energy, 2025, 10(9): 1107-1115. DOI: 10.1038/s41560-025-01831-8. |
| [2] | LEE W, CHOI M, KIM M, et al. Pinning effects of heavy elements for the structural stability of Ni-based layered oxides[J]. ACS Energy Letters, 2025, 10(9): 4527-4534. DOI: 10.1021/acsenergylett. 5c02563. |
| [3] | XIA Y Y, MAO G H, YAO T Y, et al. One-step biphasic interfacial engineering stabilizes single-crystal ultrahigh-nickel cathodes[J]. Advanced Functional Materials, 2025, e13107. DOI: 10.1002/adfm.202513107. |
| [4] | LIU F Y, LI S H, LEUNG C, et al. Unveiling the origin of oxygen framework stability in ultra-high nickel layered oxide cathodes[J]. Advanced Materials, 2025, 37(15): 2419856. DOI: 10.1002/adma. 202419856. |
| [5] | DUTTA A, HOMLAMAI K, JOHNSON M B, et al. Designing surface coating strategies with tungsten on single crystal NMC materials by XPS[J]. Advanced Energy Materials, 2025, 15(36): e03051. DOI: 10.1002/aenm.202503051. |
| [6] | NIU Y L, ZHUO Z Q, HAO J Z, et al. Designing Co-free medium-Ni layered oxide cathodes via additional Li substitution[J]. Advanced Materials, 2025, 37(42): e07530. DOI: 10.1002/adma.202507530. |
| [7] | HUANG W Y, QIU J M, ZHUO Z Q, et al. A quasi-ordered Mn-rich cathode with highly reversible oxygen anion redox chemistry[J]. Journal of the American Chemical Society, 2025, 147(30): 26218-26225. DOI: 10.1021/jacs.5c03271. |
| [8] | WU H L, DONG J H, LI J T, et al. Modulating surface anionic redox chemistry toward highly stable Li-rich cathodes with negligible oxygen loss[J]. ACS Nano, 2025, 19(16): 15886-15895. DOI: 10.1021/acsnano.5c00630. |
| [9] | PARK G T, PARK N Y, RYU J H, et al. Zero-strain Mn-rich layered cathode for sustainable and high-energy next-generation batteries[J]. Nature Energy, 2025, 10(10): 1215-1225. DOI: 10.1038/s41560-025-01852-3. |
| [10] | WU V C, LAWRENCE E A, LI T Y, et al. High energy density and micrometer-sized d0-free disordered rocksalt cathodes[J]. Energy & Environmental Science, 2025, 18(19): 8918-8928. DOI: 10. 1039/D5EE01564B. |
| [11] | HAN Z B, MAITARAD P, YODSIN N, et al. Catalysis-induced highly-stable interface on porous silicon for high-rate lithium-ion batteries[J]. Nano-Micro Letters, 2025, 17(1): 200. DOI: 10.1007/s40820-025-01701-8. |
| [12] | HUI Z Y, YU S C, WANG S, et al. Nucleation processes at interfaces with both substrate and electrolyte control lithium growth[J]. Nature Chemistry, 2025: 1-10. DOI: 10.1038/s41557-025-01911-y. |
| [13] | WANG F, LU A B, LIU Z D, et al. Tailoring graphite interlayers with electron-acceptor bridges raises ion diffusion kinetics for ultrafast charging batteries[J]. Advanced Materials, 2025, n/a(n/a): e09207. DOI: 10.1002/adma.202509207. |
| [14] | JANG B, SONG Y B, BAECK K H, et al. Revitalizing sulfide solid electrolytes for all-solid-state batteries: Dry-air exposure and microwave-driven regeneration[J]. Advanced Energy Materials, 2025, e02981. DOI: 10.1002/aenm.202502981. |
| [15] | KIM K T, KIM J S, BAECK K H, et al. Surface fluorination shielding of sulfide solid electrolytes for enhanced electrochemical stability in all-solid-state batteries[J]. Advanced Materials, 2025, 37(35): 2416816. DOI: 10.1002/adma.202416816. |
| [16] | MELVIN D L R, SINISCALCHI M, SPENCER-JOLLY D, et al. High plating currents without dendrites at the interface between a lithium anode and solid electrolyte[J]. Nature Energy, 2025, 10(10): 1205-1214. DOI: 10.1038/s41560-025-01847-0. |
| [17] | YANG J L, CHEN S W, YUAN Q, et al. UCl3-type crystalline oxychloride electrolytes for all-solid-state lithium-ion batteries[J]. Journal of the American Chemical Society, 2025, 147(40): 36557-36569. DOI: 10.1021/jacs.5c11480. |
| [18] | FU J M, SU H, LUO J, et al. Chemical bond covalency in superionic halide solid-state electrolytes[J]. Angewandte Chemie, 2025, 137(32): e202508835. DOI: 10.1002/ange.202508835. |
| [19] | ITO D, KUWATA N, TAKEMOTO S, et al. Lattice-matched antiperovskite-perovskite system toward all-solid-state batteries[J]. Nature Communications, 2025, 16: 7372. DOI: 10.1038/s41467-025-62860-1. |
| [20] | DUAN S, ZHANG L F, ZHENG Y, et al. "Rigid exterior, soft interior" design enables high-voltage polyether electrolytes for quasi-solid-state batteries[J]. Angewandte Chemie International Edition, 2025, 64(32): e202502728. DOI: 10.1002/anie.202502728. |
| [21] | QU Y P, SU C, WANG L, et al. Interface engineered electrolyte design strategy for ultralong-cycle solid-state lithium batteries over wide temperature range[J]. Angewandte Chemie International Edition, 2025, 64(27): e202506731. DOI: 10.1002/anie.202506731. |
| [22] | LI M N, RAKOV D A, FAN Y M, et al. Balancing solvation ability of polymer and solvent in gel polymer electrolytes for efficient lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(41): e202513450. DOI: 10.1002/anie.202513450. |
| [23] | GOU J R, CUI K X, WANG S Q, et al. An anisotropic strategy for developing polymer electrolytes endowing lithium metal batteries with electrochemo-mechanically stable interface[J]. Nature Communications, 2025, 16: 3626. DOI: 10.1038/s41467-025-58916-x. |
| [24] | YANG Z Q, YANG B, WANG S, et al. Multivariate distribution structured anisotropic inorganic polymer composite electrolyte for long-cycle and high-energy all-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(30): e202423227. DOI: 10.1002/anie.202423227. |
| [25] | ZHENG G R, REN H Y, QIU J M, et al. Additive-regulated interface chemistry enables depolarization for ultra-high capacity LiCoO2[J]. Advanced Materials, 2025, e04106. DOI: 10.1002/adma.202504106. |
| [26] | JI H J, XIANG J W, LI Y, et al. Liquid-liquid interfacial tension stabilized Li-metal batteries[J]. Nature, 2025, 643(8074): 1255-1262. DOI: 10.1038/s41586-025-09293-4. |
| [27] | SONG C, HAN S H, CHOI Y, et al. Geometric design of interface structures and electrolyte solvation chemistry for fast charging lithium-ion batteries[J]. Advanced Materials, 2025, 37(19): 2418773. DOI: 10.1002/adma.202418773. |
| [28] | HE Y P, CHEN T L, ZHANG Y L, et al. EC-less electrolytes for high-safety and long-life nickel-rich lithium-ion batteries[J]. Advanced Functional Materials, 2025, n/a(n/a): e17363. DOI: 10.1002/adfm.202517363. |
| [29] | YAN M Y, LIANG J Y, ZHANG X S, et al. An additive-assisted hydrolysis-blocking route enables thermally stable interfacial chemistry of silicon-based anode materials in a rechargeable lithium battery[J]. Advanced Energy Materials, 2025, 15(33): 2501637. DOI: 10.1002/aenm.202501637. |
| [30] | YANG Y Z, LI Z L, ZHANG M, et al. Electrolyte chemistry modulation toward high-performance and ultralow-temperature silicon anode[J]. Advanced Materials, 2025, 37(15): 2417981. DOI: 10.1002/adma.202417981. |
| [31] | CHEN X L, YU Z L, LI X J, et al. Multifunctional siloxane additive enabling ultrahigh-nickel lithium battery with long cycle life at 30 and 60℃[J]. Small, 2025, 21(7): 2409586. DOI: 10.1002/smll. 202409586. |
| [32] | JIANG S, LI R H, CHEN L, et al. Deciphering the purification additive chemistries for ultra-stable high-voltage lithium-ion batteries[J]. Advanced Materials, 2025, 37(15): 2417285. DOI: 10.1002/adma.202417285. |
| [33] | HUANG H, HU Y T, HOU Y J, et al. Delocalized electrolyte design enables 600 Wh kg-1 lithium metal pouch cells[J]. Nature, 2025, 644(8077): 660-667. DOI: 10.1038/s41586-025-09382-4. |
| [34] | WANG X Y, JI C Y, CHEN H Q, et al. Size-induced high entropy effect for optimized electrolyte design of lithium-ion batteries[J]. Advanced Materials, 2025, e14068. DOI: 10.1002/adma.2025 14068. |
| [35] | ZHAO C X, LI Z, CHEN B, et al. Self-adaptive electrolytes for fast-charging batteries[J]. Nature Energy, 2025, 10(7): 904-913. DOI: 10.1038/s41560-025-01801-0. |
| [36] | DONG S W, SHI L F, ZHANG Y, et al. "Pseudo-charge-transfer complex" electrolyte enables 490 Wh kg-1 lithium metal battery operated from -40 to 80℃[J]. Angewandte Chemie International Edition, 2025, 64(31): e202506750. DOI: 10.1002/anie.202506750. |
| [37] | JANG J, WANG C Z, KANG G M, et al. Miniature Li+ solvation by symmetric molecular design for practical and safe Li-metal batteries[J]. Nature Energy, 2025, 10(4): 502-512. DOI: 10.1038/s41560-025-01733-9. |
| [38] | PARK N Y, LEE H U, YU T Y, et al. High-energy, long-life Ni-rich cathode materials with columnar structures for all-solid-state batteries[J]. Nature Energy, 2025, 10(4): 479-489. DOI: 10.1038/s41560-025-01726-8. |
| [39] | LI Y Y, LI J W, et al. Surface-reconstructed high-nickel cathodes for ultrastable 4.5 V tolerant sulfide-based all-solid-state batteries[J]. ACS Energy Letters, 2025, 10(5): 2203-2211. DOI: 10.1021/acsenergylett.5c00071. |
| [40] | CHEN J Y, ZHANG X D, WU F X, et al. High performance sulfide all-solid-state batteries enabled by Li1.26Mg0.12Zr1.86(PO4)3 coating of iron fluoride cathodes[J]. Journal of Materials Chemistry A, 2025, 13(30): 24578-24589. DOI: 10.1039/D5TA02979A. |
| [41] | HAO X G, DONG Z L, MA J B, et al. A universal solid reaction enabling nanosized Li2S in an amorphous matrix for all-solid-state Li-S batteries[J]. Journal of the American Chemical Society, 2025. DOI: 10.1021/jacs.4c18340. |
| [42] | TANIBATA N, AIZU S, SASADAIRA T, et al. Redox-level design for high-energy-density chloride electrodes[J]. Advanced Energy Materials, 2025, n/a(n/a): e04110. DOI: 10.1002/aenm.202504110. |
| [43] | WANG Z W, XIANG S, LUO J D, et al. Achieving 766.5 Wh kg-1 electrode-level energy density via solid-state cathode integrating ultrahigh nickel oxide and lithium iron chloride[J]. Nano Letters, 2025, 25(34): 12930-12937. DOI: 10.1021/acs.nanolett.5c03012. |
| [44] | WANG Z Y, WANG T R, ZHANG N, et al. Interlayer design for halide electrolytes in all-solid-state lithium metal batteries[J]. Advanced Materials, 2025, 37(30): 2501838. DOI: 10.1002/adma.202501838. |
| [45] | HUANG D, YUAN S Y, ADELSTEIN N, et al. Unveiling the role of lithium iodide in stabilizing solid interfaces in all-solid-state Li metal batteries[J]. ACS Energy Letters, 2025, 10(9): 4553-4559. DOI: 10.1021/acsenergylett.5c01578. |
| [46] | LI R J, ZENG J Y, WANG P Y, et al. A high-performance silicon-based anode enabled by hybrid pathways for all-solid-state batteries[J]. Advanced Energy Materials, 2025, 15(37): e02913. DOI: 10.1002/aenm.202502913. |
| [47] | ZHANG G W, LI D Y, YU D F, et al. Stabilizing halide electrolytes against lithium metal with a self-limiting layer for all-solid-state lithium metal batteries[J]. ACS Nano, 2025, 19(15): 14839-14847. DOI: 10.1021/acsnano.4c18584. |
| [48] | LIANG Z M, NAFIS M S, et al. Pressure-tolerant 3D anodes enable short-circuit prevention and low heat generation in argyrodite solid-state batteries[J]. ACS Energy Letters, 2025, 10(5): 2461-2467. DOI: 10.1021/acsenergylett.5c00985. |
| [49] | HE Y Q, XIONG D F, CHEN M F, et al. Modulating ion-dipole and dipole-dipole interactions for stable wide-temperature-range lithium-sulfur batteries enabled by quantum-dot catalysts[J]. Angewandte Chemie International Edition, 2025, 64(39): e202512168. DOI: 10. 1002/anie.202512168. |
| [50] | GUO C, XUE P, FENG W H, et al. Covalent organic framework quantum dots for near-frictionless ion transport battery electrolyte[J]. Angewandte Chemie International Edition, 2025, 64(39): e202512031. DOI: 10.1002/anie.202512031. |
| [51] | CAO G Q, LI X F, LI M Y, et al. Understanding the electron state effect of iron single-atom for enhancing solid-solid conversion kinetics of sulfur cathodes[J]. Advanced Functional Materials, 2025, 35(36): 2504228. DOI: 10.1002/adfm.202504228. |
| [52] | LI H, CUI L M, WU F L, et al. Kinetically-enhanced gradient modulator layer enables wide-temperature ultralong-life all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2025, 15(32): 2501259. DOI: 10.1002/aenm.202501259. |
| [53] | ZHONG H Y, UNIVERSITY X, LIN H X, et al. Synergistic regulation of single-atom catalysis and conductive enhancement in all-solid-state Li-S batteries[J]. ACS Energy Letters, 2025, 10(9): 4082-4090. DOI: 10.1021/acsenergylett.5c01856. |
| [54] | QU J J, WANG B J, LI J H, et al. Separating Li-ion and electron conduction pathways to realize robust cathode interfaces[J]. Journal of Materials Chemistry A, 2025, 13(34): 28508-28520. DOI: 10.1039/D5TA04002G. |
| [55] | SUN J Q, WEN B, LI Y G, et al. Improving cycle life of Ni-rich Li-ion battery cathodes by using compartmentalized anode and cathode electrolytes[J]. Small, 2025, 21(11): 2410149. DOI: 10.1002/smll.202410149. |
| [56] | TIAN M Y, QIAO R H, CEN G J, et al. Dual-gradient metal layer for practicalizing high-energy lithium batteries[J]. Nature Communications, 2025, 16: 6864. DOI: 10.1038/s41467-025-62163-5. |
| [57] | JIANG W Y, JIN X, LI B R, et al. Wide temperature range adaptable electric field driven binder for advanced lithium-sulfur batteries[J]. Nature Communications, 2025, 16: 7860. DOI: 10.1038/s41467-025-62909-1. |
| [58] | KOO J K, LIM J, SHIN J, et al. Dry-processed ultra-high-energy cathodes (99.6wt%, 4.0 g cm-3) using single-crystalline Ni-rich oxides[J]. Energy Storage Materials, 2025, 78: 104270. DOI: 10.1016/j.ensm.2025.104270. |
| [59] | PARK J, ZHANG W Y, ZHANG S Y. Cage effect of nitrogen oxide radicals enables Li-NOx cell with a 3.8 V cell voltage[J]. Advanced Materials, 2025, e11299. DOI: 10.1002/adma.202511299. |
| [60] | KANG Z Y, WANG S F, WU G B, et al. Nitrogen-centered organic salts enable stable lithium-ion supply for high-energy-density batteries[J]. Journal of the American Chemical Society, 2025, 147(34): 30591-30598. DOI: 10.1021/jacs.5c09300. |
| [61] | QIN X, ZHAO L, HAN J W, et al. Self-pressure silicon-carbon anodes for low-external-pressure solid-state Li-ion batteries[J]. ACS Nano, 2025, 19(18): 17760-17773. DOI: 10.1021/acsnano. 5c03017. |
| [62] | VETTORI K, SCHRÖDER S, AHRENS L, et al. Chemical and structural degradation of single crystalline high-nickel cathode materials during high-voltage holds[J]. Advanced Energy Materials, 2025, 15(33): 2502148. DOI: 10.1002/aenm.202502148. |
| [63] | GAO X, LI B, KUMMER K, et al. Clarifying the origin of molecular O2 in cathode oxides[J]. Nature Materials, 2025, 24(5): 743-752. DOI: 10.1038/s41563-025-02144-7. |
| [64] | ARIYOSHI K, TANAKA T. Effect of electrochemically active surface area on the charge-transfer resistance of layered positive electrode materials[J]. CrystEngComm, 2025, 27(37): 6122-6126. DOI: 10.1039/D5CE00709G. |
| [65] | CUI Z H, LIU C, WANG F, et al. Navigating thermal stability intricacies of high-nickel cathodes for high-energy lithium batteries[J]. Nature Energy, 2025, 10(4): 490-501. DOI: 10.1038/s41560-025-01731-x. |
| [66] | SHU Y M, ZHAO W G, CHEN H Y, et al. Unraveling and suppression of multi-directional planar slipping and microcracking in single-crystal Co-free, Ni-rich cathodes[J]. Angewandte Chemie International Edition, 2025, 64(39): e202512232. DOI: 10.1002/anie.202512232. |
| [67] | AL-JALJOULI F, MÜCKE R, ROITZHEIM C, et al. Chemo-thermal stress in all-solid-state batteries: Impact of cathode active materials and microstructure[J]. Journal of Power Sources, 2025, 644: 237136. DOI: 10.1016/j.jpowsour.2025.237136. |
| [68] | PAN H Y, JIAO S C, HONG Y S, et al. Probing domain-boundary-induced structural degradation in single-crystalline LiCoO2 by nanoscale imaging[J]. ACS Nano, 2025, 19(29): 26882-26891. DOI: 10.1021/acsnano.5c07834. |
| [69] | DU Y H, ZHAO W G, LI Z J, et al. Modulating surface structural evolution of LiCoO2 for enhanced extreme fast-charging durability[J]. ACS Nano, 2025, 19(28): 25951-25961. DOI: 10.1021/acsnano. 5c05981. |
| [70] | PHILLIPS G S, STEELE J M A, SAYED F N, et al. Collinear Jahn-Teller ordering induces monoclinic distortion in "defect-free" LiNiO2[J]. Journal of the American Chemical Society, 2025, 147(32): 29042-29051. DOI: 10.1021/jacs.5c07435. |
| [71] | MA H, CAI S J, SONG R, et al. Evolution of interfacial electro-chemo-mechanics in high-energy-density NCM811||Si/C-composite lithium-ion pouch cells[J]. Chemical Engineering Journal, 2025, 511: 162081. DOI: 10.1016/j.cej.2025.162081. |
| [72] | ZHANG J Y, WENG S T, ZHONG C, et al. Worse interference of Fe3+ than Fe2+ on degrading the interphase and performance of LiFePO4||graphite battery[J]. Advanced Materials, 2025, n/a(n/a): e13736. DOI: 10.1002/adma.202513736. |
| [73] | TAN S, XIA K X, et al. Synchronized breathing in anion-derived interphases[J]. ACS Energy Letters, 2025, 10(8): 3746-3754. DOI: 10.1021/acsenergylett.5c01756. |
| [74] | GOBER M, AMAI J, TORRES J R, et al. High spatial resolution neutron imaging of lithium-ion batteries: Correlating microstructure and lithium transport[J]. Journal of Power Sources, 2025, 655: 237765. DOI: 10.1016/j.jpowsour.2025.237765. |
| [75] | JEONG H, et al. Curvature-dependent electrochemo-mechanics of silicon during electrochemical cycling[J]. ACS Energy Letters, 2025, 10(7): 3388-3394. DOI: 10.1021/acsenergylett.5c01043. |
| [76] | WICHMANN L, JIANG S K, THIENENKAMP J H, et al. Origins of lithium inventory reversibility with an alloying functional layer in anode-free lithium metal batteries[J]. Nature Communications, 2025, 16: 7216. DOI: 10.1038/s41467-025-62289-6. |
| [77] | ONEY G, MONACO F, MITRA S, et al. Dead, slow, and overworked graphite: operando X-ray microdiffraction mapping of aged electrodes[J]. Advanced Energy Materials, 2025, 15(38): e02032. DOI: 10.1002/aenm.202502032. |
| [78] | LI G C, ZHANG T L, TANG J Y, et al. Decoding chemo-mechanical failure mechanisms of solid-state lithium metal battery under low stack pressure via optical fiber sensors[J]. Advanced Materials, 2025, 37(30): 2417770. DOI: 10.1002/adma.202417770. |
| [79] | CHEN B, HOPE-GLENN N, WRIGHT A, et al. Mechanistic understanding of lithium-ion adsorption, intercalation, and plating during charging of graphite electrodes[J]. ACS Electrochemistry, 2025, 1(5): 574-587. DOI: 10.1021/acselectrochem.4c00079. |
| [80] | WATANABE T, PARK Y J, YAMAMOTO K, et al. Elucidation of the factors that determine the reaction distribution during charging in graphite electrodes for all-solid-state batteries using in situ nano X-ray tomography and digital volume correlation analysis[J]. ACS Applied Materials & Interfaces, 2025, 17(32): 45704-45712. DOI: 10.1021/acsami.5c08660. |
| [81] | MORINO Y, TAKASE K, KANAZAWA A, et al. In-situ internal observation of silicon composite anode in all-solid-state battery using X-ray CT[J]. ACS Applied Materials & Interfaces, 2025, 17(16): 23786-23794. DOI: 10.1021/acsami.4c20859. |
| [82] | SUN G, WANG H T, LEE C F, et al. Visualization of thermal-induced degradation pathways of high-Ni cathode: A comparative study in solid chloride and liquid electrolytes[J]. Advanced Materials, 2025, e10392. DOI: 10.1002/adma.202510392. |
| [83] | JI T T, ZHANG Y X, TORRES J, et al. Operando neutron imaging-guided gradient design of Li-ion solid conductor for high-mass-loading cathodes[J]. Nature Communications, 2025, 16: 7667. DOI: 10.1038/s41467-025-62518-y. |
| [84] | ZHOU J Y, HUANG Y P, ZHONG J C, et al. Nonambient thermodynamics in solid-state batteries[J]. ACS Energy Letters, 2025, 10(9): 4304-4312. DOI: 10.1021/acsenergylett.5c01704. |
| [85] | WANG S H, LI S W, CHEN X Q, et al. Depth-resolved probing of native solid electrolyte interphase formation and dynamics in Li metal batteries by cryogenic X-ray photoelectron spectroscopy[J]. Journal of the American Chemical Society, 2025, 147(42): 38069-38077. DOI: 10.1021/jacs.5c09519. |
| [86] | SUN Y C, NING Y B, QIANG Z M, et al. Digital-twin-assisted insights into irreversible capacity and activation strategy power high-loading solid-state batteries[J]. Angewandte Chemie International Edition, 2025, 64(36): e202502169. DOI: 10.1002/anie.202502169. |
| [87] | ILIC S, MARTINS M, LIU H Y, et al. An unwanted guest in the electrochemical oxidation of high-voltage Li-ion battery electrolytes: The life of highly reactive protons[J]. Energy & Environmental Science, 2025, 18(17): 8303-8312. DOI: 10.1039/d5ee02403j. |
| [88] | QU H T, ZHANG M T, JI H C, et al. Thermodynamic feedback mechanisms for mitigating polarization in lithium-ion batteries[J]. Angewandte Chemie International Edition, 2025, 64(41): e202514404. DOI: 10.1002/anie.202514404. |
| [89] | SUN N, RONG Q L, WU J, et al. Fully printable integrated multifunctional sensor arrays for intelligent lithium-ion batteries[J]. Nature Communications, 2025, 16: 7361. DOI: 10.1038/s41467-025-62657-2. |
| [90] | POLLOK S, KHOSHKALAM M, GHAFFARI-TABRIZI F, et al. Magnetic microscopy for operando imaging of battery dynamics[J]. Nature Communications, 2025, 16: 8303. DOI: 10.1038/s41467-025-63409-y. |
| [91] | KALYK F, PESCARA L, DRÜSCHLER M, et al. Toward robust ionic conductivity determination of sulfide-based solid electrolytes for solid-state batteries[J]. Advanced Functional Materials, 2025, e09479. DOI: 10.1002/adfm.202509479. |
| [92] | BHARATHRAJ S, NIMMAKAYALA D, ADIGA S P, et al. Accurate estimation of solid-phase diffusivity in natural graphite using a voltage relaxation technique[J]. Journal of Power Sources, 2025, 656: 238009. DOI: 10.1016/j.jpowsour.2025.238009. |
| [93] | LIU Y M, TIAN Y, FU Z Q, et al. THermite reaction-induced thermal runaway of lithium-ion batteries[J]. Advanced Materials, 2025, e10486. DOI: 10.1002/adma.202510486. |
| [94] | SHEN L Y, WANG Z L, XU S J, et al. Harnessing database-supported high-throughput screening for the design of stable interlayers in halide-based all-solid-state batteries[J]. Nature Communications, 2025, 16: 3687. DOI: 10.1038/s41467-025-58522-x. |
| [95] | LI R H, ZHANG H K, ZHANG S Q, et al. Unified affinity paradigm for the rational design of high-efficiency lithium metal electrolytes[J]. Nature Energy, 2025, 10(9): 1155-1165. DOI: 10.1038/s41560-025-01842-5. |
| [96] | GONG X S, LI B, YAO J Y, et al. Edge formation in intermittent slot-die coating for lithium-ion battery electrode[J]. Physics of Fluids, 2025, 37(8): 082103. DOI: 10.1063/5.0279043. |
| [97] | BORSHON I Z, JABBARI V, KINGSTON T A, et al. Deep learning analysis of solid-electrolyte interphase microstructures in lithium-ion batteries[J]. Advanced Materials Interfaces, 2025, e00558. DOI: 10.1002/admi.202500558. |
| [98] | YARI S, CONDE REIS A, PANG Q Q, et al. Performance benchmarking and analysis of lithium-sulfur batteries for next-generation cell design[J]. Nature Communications, 2025, 16: 5473. DOI: 10.1038/s41467-025-60528-4. |
| [99] | CHATTERJEE D, NAIK K G, et al. Alloy anodes: Mechanistic regulation of reaction and transport at solid-solid interfaces[J]. ACS Energy Letters, 2025, 10(9): 4184-4193. DOI: 10.1021/acsenergylett.5c01597. |
| [100] | KAUSTHUBHARAM, AYYASWAMY A, et al. Mechanistic interrogation of Li stripping under dynamic operation in solid-state batteries[J]. ACS Energy Letters, 2025, 10(9): 4212-4220. DOI: 10.1021/acsenergylett.5c01911. |
| [1] | 钱艺华, 赵耀洪, 王青, 郭鹏, 裴大婷, 曾以柔. 钠离子卤化物固态电解质研究进展与展望[J]. 储能科学与技术, 2025, 14(9): 3389-3401. |
| [2] | 徐成善, 李涵, 王炎, 卢兰光, 冯旭宁, 欧阳明高. 双层储能电池火蔓延特性及触发过程能量传递机制研究[J]. 储能科学与技术, 2025, 14(9): 3552-3563. |
| [3] | 张新新, 岑官骏, 乔荣涵, 郝峻丰, 孙蔷馥, 郑博文, 谷宇皓, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.6.1—2025.7.31)[J]. 储能科学与技术, 2025, 14(9): 3229-3248. |
| [4] | 邵换峥. 基于大数据与深度学习的锂电池SOC与SOH联合评估方法[J]. 储能科学与技术, 2025, 14(9): 3564-3566. |
| [5] | 庞超, 丁爽, 张晓琨, 向勇. 局域高浓度电解质溶剂化结构与离子迁移行为模拟研究[J]. 储能科学与技术, 2025, 14(8): 3207-3215. |
| [6] | 钟晓晖, 李将渊, 陆玮, 张乾能, 张辉, 郑卓群, 解晶莹, 罗英. 不同荷电区间钛酸锂电池循环容量衰减机制研究[J]. 储能科学与技术, 2025, 14(8): 2960-2969. |
| [7] | 马昊远, 吴焱, 王通, 胡锦洋, 李佳, 黄钰期. 基于力-电-温度信号和CNN-BiLSTM模型的磷酸铁锂电池SOC估计[J]. 储能科学与技术, 2025, 14(7): 2865-2874. |
| [8] | 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 张新新, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.04.01—2025.05.31)[J]. 储能科学与技术, 2025, 14(7): 2884-2902. |
| [9] | 程静飞. 基于孤立森林算法的锂电池内部故障分析策略[J]. 储能科学与技术, 2025, 14(7): 2878-2880. |
| [10] | 樊慧敏, 彭浩鸿, 孟辉, 唐梦宏, 易昊昊, 丁静, 刘金成, 徐成善, 冯旭宁. 储能电池模组膨胀力特性研究及仿真分析[J]. 储能科学与技术, 2025, 14(6): 2488-2497. |
| [11] | 张文杰, 任东生, 吴宇, 芮新宇, 刘翔, 冯旭宁, 卢兰光. 基于Li10GeP12S2 全固态电池关键材料的热稳定性[J]. 储能科学与技术, 2025, 14(6): 2193-2199. |
| [12] | 徐章杰, 孙铮岳, 张鑫焱, 张吉亮, 于颖超, 董闯. FeOOH包覆改性FeS锂离子电池负极材料[J]. 储能科学与技术, 2025, 14(6): 2232-2239. |
| [13] | 巫春玲, 王立顶, 卢勇, 耿莉敏, 陈昊, 孟锦豪. 基于白鹭群优化高斯过程回归的锂电池SOH估计方法[J]. 储能科学与技术, 2025, 14(6): 2498-2511. |
| [14] | 韩丹丹, 张武卫, 张亮, 王宗江. 核壳结构LiMn1-y Fe y PO4/C正极材料设计与电化学性能研究[J]. 储能科学与技术, 2025, 14(6): 2215-2222. |
| [15] | 平金珍, 温沁润. 基于电子图像处理技术的锂电池表面缺陷检测[J]. 储能科学与技术, 2025, 14(6): 2512-2514. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||