储能科学与技术

• XXXX • 上一篇    下一篇

高稳定性锂金属负极设计与开发

崔言明1(✉),钱瑶1,赵炎春1,黄园桥1,陈施威1,林久1,2(✉)   

  1. 1. 浙江锋锂新能源科技有限公司,浙江 宁波 315201
    2. 江西赣锋锂业集团股份有限公司,江西 新余338000
  • 收稿日期:2025-11-03 修回日期:2025-12-04
  • 通讯作者: 林久 E-mail:cuiyanming@ganfengbattery.com;linjiu@ganfenglithium.com
  • 作者简介:崔言明(1986—),男,博士,正高级工程师,主要研究方向为锂金属负极、高能量密度锂电池与全固态锂电池,E-mail:cuiyanming@ganfengbattery.com 林久(1982—),男,博士,正高级工程师,主要研究方向为高安全性、高比能锂电池及特种电源,E-mail:linjiu@ganfenglithium.com

Design and development of high-stability lithium metal anodes

CUI Yanming1(✉),QIAN Yao1,ZHAO Yanchun1,HUANG Yuanqiao1,CHEN Shiwei1,LIN Jiu1,2(✉)   

  1. 1. Zhejiang Funlithium New Energy Technology Co. Ltd., Ningbo 315201, Zhejiang, China
    2. Jiangxi Ganfeng Lithium Group Co. Ltd., Xinyu 338000, Jiangxi, China
  • Received:2025-11-03 Revised:2025-12-04
  • Contact: LIN Jiu E-mail:cuiyanming@ganfengbattery.com;linjiu@ganfenglithium.com

摘要: 锂金属负极具有极高的比容量,是高能量密度锂二次电池的重要选择,然而安全性问题严重阻碍了其实际应用。由于锂金属负极的产热量显著高于电池其他组分,其热安全性能的提升是决定锂金属电池整体安全性的关键。因此,本文开发了一种具有优异稳定性与安全性,且适用于规模化生产的超薄(20 μm)锂锌合金负极材料(Li0.7Zn0.3)。研究发现,新型锂合金材料在有机溶剂中可浸泡30天保持稳定,且与水接触后不会发生爆燃,解决了纯锂(Li)遇水起火的问题。Li0.7Zn0.3||Cu半电池在60 ℃下贮存30天后,测得其脱锂量仍高达新鲜负极的98.5%,表明界面副反应实现有效抑制。差示扫描量热法(DSC)测试显示,新型锂合金材料在循环30圈后(100%SOC)表现出远优于纯锂的热稳定性,有望显著提升电池的安全性。软包电池的绝热加速量热(ARC)测试表明,使用合金材料替代纯锂后,热失控触发温度(T2)由177.8 ℃提升至216.5 ℃,热失控最高温度(T3)由1940.0 ℃降低至1191.5 ℃。尤为突出的是,本工作基于合金负极制备了具有高容量(53.60 Ah)和高能量密度(509.25 Wh/kg)的软包电池,并实现了120次稳定循环。综上,本研究成功开发了一种低成本、易制备的高安全性Li0.7Zn0.3合金负极,显著提高了锂金属电池的安全性能,为推动锂负极电池加快实现产业化和应用提供关键技术支撑。

关键词: 锂金属电池, 500 Wh/kg, 锂合金, 高安全性, 热失控

Abstract: Although lithium metal anodes exhibit an exceptionally high specific capacity and are ideal candidates for high-energy-density rechargeable lithium batteries, safety concerns have severely hindered their practical application. With a heat release significantly surpassing that of other battery components, improving thermal-safety performance of lithium metal anodes is the key to determining the overall safety of lithium-metal batteries. Accordingly, this work develops an ultrathin (20 μm) Li-Zn (Li0.7Zn0.3) alloy anode that is suitable for large-scale production. The as-prepared Li0.7Zn0.3 exhibits exceptional stability and superior safety. This research reveals that this newly designed lithium alloy material remains stable after immersion in organic solvents for 30 days and does not ignite upon contact with water, resolving the issue of pure lithium (Li) catching fire in the presence of water. After storage at 60 ℃ for 30 days, the Li0.7Zn0.3||Cu half-cell delivers 98.5% of the delithiation capacity of a fresh anode, indicating that interfacial side reactions are effectively suppressed. Differential scanning calorimetry (DSC) tests further demonstrates that this alloy anode exhibits superior thermal stability relative to pure Li after 30 cycles at 100% SOC, which is expected to significantly enhance battery safety. Adiabatic rate calorimetry (ARC) tests on pouch cells shows that replacing pure Li with alloy raises the thermal runaway trigger temperature (T2) from 177.8 ℃ to 216.5 ℃. Furthermore, the maximum temperatures (T3) during thermal runaway are reduced from 1940.0 ℃ to 1191.5 ℃. In particular, a high-capacity (53.60 Ah) pouch cell based on this new alloy anode delivers a high energy density of 509.25 Wh/kg and maintains stable cycling for 120 cycles. Collectively, this work introduces a low-cost, easily-prepared Li0.7Zn0.3 alloy with inherently high safety, which markedly elevates the safety profile of lithium metal batteries and furnishes critical technical groundwork for their industrial deployment.

Key words: lithium metal battery, 500 Wh/kg, lithium alloy, high safety, thermal runaway

中图分类号: