[1]LIU J, BAO Z Z, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries [J]. Nature Energy, 2019, 4: 180–186. DOI:10.1038/s41560-019-0338-x. [百度学术]
[2]QING P, WU Z B, WANG A B, et al. Highly Reversible Lithium Metal Anode Enabled by 3D Lithiophilic-Lithiophobic Dual-Skeletons[J]. Advanced Materials, 2023, 35(15): 2211203. DOI: 10.1002/adma.202211203. [百度学术]
[3]QING P, HUANG S Z, NAREN T Y, et al. Interpenetrating LiB/Li3BN2 phases enabling stable composite lithium metal anode[J].Science Bulletin, 2024, 69(18): 2842-2852. DOI: 10.1016/j. scib.2024.07.021. [百度学术]
[4]ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3:16-21. DOI:10.1038/s41560-017-0047-2. [百度学术]
[5]LI S, JIANG M, XIE Y, et al. Developing high‐performance lithium metal anode in liquid electrolytes: challenges and progress[J]. Advanced Materials, 2018, 30: 1706375. DOI: 10.1002/adma.201706375. [百度学术]
[6]ZHANG C, FAN H M, CHEN X L, et al. Non-stick Li-alloy leaf for long-lasting secondary batteries[J]. Energy & Environmental Science, 2022,15: 5251-5260. DOI:10.1039/d2ee02135h. [百度学术]
[7]崔言明, 林久, 马贺礼, 等. 一种飞行器用高安全、长寿命的锂金属电池模组: 202410905593.X [P]. 2024-10-11. [百度学术] CUI Y M, LIN J, MA H L, et al. A high-safety, long-life lithium metal battery module for aircraft: 202410905593.X [P]. 2024-10-11. [百度学术]
[8]许晓雄, 崔言明, 秦晨阳, 等. 一种锂金属电池负极材料及其制备方法和锂金属电池:202210595281.1 [P]. 2022-05-28. [百度学术] XU X X, CUI Y M, QIN C Y, et al. A lithium metal anode material, its preparation method, and a lithium metal battery:202210595281.1 [P]. 2022-05-28. [百度学术]
[9]李良彬, 彭良平, 周金根, 等. 一种超薄锂带制备的挤压模具组合装置: 202322860850.6 [P]. 2023-10-24. [百度学术]
LI L B, PENG L P, ZHOU J Y, et al. An extrusion die assembly for ultra-thin lithium strip production: 202322860850.6 [P]. 2023-10-24. [百度学术]
[10]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 锂带:GB/T 20930—2015 [S]. 北京:中国标准出版社, 2015. [百度学术] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Lithium strip: GB/T 20930—2015 [S]. Beijing:Standards Press of China, 2015. [百度学术]
[11]PUTHUSSERI D, PARMANANDA M, MUKHERJEE P P, et al. Probing the thermal safety of Li metal batteries[J]. Journal of The Electrochemical Society, 2020, 167: 120513. DOI: 10.1149/1945-7111/ababd2. [百度学术]
[12]ZHANG K, WU F, WANG X, et al. 8.5 µm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2022, 12: 2200368. DOI: 10.1002/aenm.202200368. [百度学术]
[13]LI Y Q, LIU Q A, WU Y S, et al. Unraveling the reaction mystery of Li and Na with dry air[J]. Journal of the American Chemical Society, 2023, 145: 10576. DOI: 10.1021/jacs.2c13589. [百度学术]
[14]SCHIEMANN M, BERGTHORSON J, FISCHER P, et al. A review on lithium combustion[J]. Applied Energy, 2016, 162: 948. DOI: 10.1016/j.apenergy.2015.10.172. [百度学术]
[15]WU Y, ZENG Z, ZHANG H, et al. Constructing thermo-responsive polysiloxane shields via lithium initiation to inhibit thermal runaway of lithium metal batteries[J]. Energy Storage Materials, 2024, 70:103499. DOI: 10.1016/j.ensm.2024.103499. [百度学术]
[16]JIANG F N, CHENG X B, YANG S J, et al. Thermoresponsive electrolytes for safe lithium‐metal batteries[J]. Advanced Materials 2023, 35, 2209114. DOI: 10.1002/adma.202209114. [百度学术]
[17]CHENG X B, YANG S J, LIU Z C, et al. Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries[J]. Advanced Materials, 2024, 36(1): 2307370. DOI:10.1002/adma.202307370. [百度学术]
[18]ZENG X Y, CHEN Y, NIE H, et al. Advanced poly (ether ether ketone) separator for lithium metal battery[J]. Small, 2025, 21(13): 2411626. DOI: 10.1002/smll.202411626. [百度学术]
[19]HAN L F, ZHANG M D, CAO Y K, et al. High fire-safety, thinning lithium metal anode for high-energy-density lithium metal batteries[J]. Advanced Functional Materials, 2025: 2504427. DOI: 10.1002/adfm.202504427. [百度学术]
[20]WU W Y, LUO W, HUANG Y H. Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries[J]. Chemical Society Review, 2023,52, 2553-2572 DOI: 10.1039/d2cs00606e. [百度学术]
[21]BURTON M, NARAYANAN S, JAGGER B, et al. Techno-economic assessment of thin lithium metal anodes for solid-state batteries[J]. Nature Energy, 2025, 10: 135–147. DOI:10.1038/s41560-024-01676-7. [百度学术]
[22]CHEN Q L, LI H, MEYERSON M L, et al. Li-Zn overlayer to facilitate uniform lithium deposition for lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13: 9985-9993. DOI:10.1021/acsami.0c21195. [百度学术]
[23]OUYANG Y, CUI C, GUO Y P, et al. In-situ formed LiZn alloy skeleton for stable lithium anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25818–25825. DOI: 10.1021/acsami.0c04092. [百度学术]
[24]ZHOU M Y, LIAO Y Q, LI L H, et al. Unraveling the heterogeneity of solid electrolyte interphase kinetically affecting lithium electrodeposition on lithium metal anode[J]. Journal of Energy Chemistry, 2023,85:181-190. DOI: 10.1016/j.jechem.2023.06.008. [百度学术]
[25]LI J R, SU H, LIU Y, et al. Li alloys in all solid-state lithium batteries: a review of fundamentals and applications[J]. Electrochemical Energy Reviews, 2024, 7:18. DOI: 10.1007/s41918-024-00221-0. [百度学术]
[26]LIN L, LIU F, YAN X L, et al. Dendrite-Free Reverse Lithium Deposition Induced by Ion Rectification Layer toward Superior Lithium Metal Batteries[J]. Advanced Functional Materials, 2021,31(40): 2104081.DOI: 10.1002/adfm.202104081. [百度学术]
[27]Li X Y, ZHU R J, JIANG H J, et al. Thickness-controllable Li–Zn composite anode for high-energy and low-N/P ratio lithium metal batteries[J]. Journal of Materials Chemistry A, 2022,10, 11246-11253. DOI: 10.1039/d2ta02162e. [百度学术]
[28]WANG Z H, SONG Z C, LIU Y C, et al. Stabilize Li metal anode through constructing LiZn alloy/polymer hybrid protective layer towards uniform Li deposition[J]. Physical Chemistry Chemical Physics, DOI: 10.1039/d2cp04787j. [百度学术]
[29]FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-Ion batteries[J]. Joule, 2020, 4: 743-770.DOI: 10.1016/j.joule.2020.02.010. [百度学术]
[30]FENG X N, REN D S, OUYANG M G. Safety of lithium battery materials chemistry[J]. Journal of Materials Chemistry A, 2023,11: 25236-25246. DOI: 10.1039/d3ta04182d. [百度学术]
[31]XU X Q, CHENG X B, JIANG F N, et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries[J]. SusMat, 2022, 2: 435–444. DOI: 10.1002/sus2.74. [百度学术]
[32]WANG S L, ZHANG C Y, CHEN D P, et al. Explosion characteristics of two-phase ejecta from large-capacity lithium iron phosphate batteries[J]. eTransportation, 2024, 22: 100377. DOI: 10.1016/j.etran.2024.100377. [百度学术]
[33]ZHAO W H, MENG C, ZHAO Y R, et al. Research on aging-thermal characteristics coupling and aging thermal management analysis of large-capacity LiFePO4 battery. Journal of Energy Storage, 2025, 114:115675. DOI: 10.1016/j.est.2025.115675. [百度学术]
|