储能科学与技术 ›› 2016, Vol. 5 ›› Issue (4): 551-557.doi: 10.12028/j.issn.2095-4239.2016.00.022

• 研究及进展 • 上一篇    下一篇

基于Butterfly算法的大容量储能系统成组技术

韩晓娟1,赵泽昆1,谢志佳2,李建林2   

  1. 1华北电力大学,控制与计算机工程学院,北京 102206;2中国电力科学研究院,北京 100192
  • 收稿日期:2015-12-22 修回日期:2016-01-07 出版日期:2016-07-01 发布日期:2016-07-01
  • 通讯作者: 韩晓娟(1970—),女,博士,副教授,主要从事风力发电、信息融合方面的研究,Email:wmhxj@163.com。
  • 作者简介:韩晓娟(1970—),女,博士,副教授,主要从事风力发电、信息融合方面的研究,Email:wmhxj@163.com。
  • 基金资助:
    国家高技术研究发展计划(863计划)(2014AA052004);国家电网公司科学技术项目(储能融合可控负荷提升供热地区风电就地消纳能力的关键技术研究及应用);国家自然科学基金(51577065)。

Large-capacity energy storage system group technology based on Butterfly algorithm

HAN Xiaojuan1, ZHAO Zekun1, XIE Zhijia2, LI Jianlin2   

  1. 1School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China; 2China Electric Power Research Institute, Beijing 100192, China
  • Received:2015-12-22 Revised:2016-01-07 Online:2016-07-01 Published:2016-07-01

摘要:

大容量储能系统(large capacity storage system,LCSS)的不同成组方式直接影响LCSS的内阻特性,目前针对LCSS成组方式的研究还处于起步阶段,本工作基于大容量液流电池储能系统(large capacity vanadium redox battery storage system,LCVRBSS)进行研究,通过分析单电堆不同成组方式的内阻特性,选择蝴蝶算法(butterfly algorithm)对不同成组方式在不同荷电状态(state of charge,SOC)下的内阻特性进行曲面拟合,内阻的最大拟合误差控制在3.6%以内。并且以单电堆内阻最小为优化目标,使用粒子群算法进行寻优,得到单电堆最佳成组方式。

关键词: 储能, Butterfly算法, 成组技术, 粒子群优化

Abstract:

 Various grouping ways of large capacity storage system (LCSS) has directly impact on resistance characteristics inside LCSS. Currently, researches on grouping manners of LCSS are still at initial stage. Large capacity vanadium redox battery storage system (LCVRBSS) is adopted for research analysis in this paper. By virtue of analyzing resistance characteristics of different grouping modes of single stack, butterfly algorithm is employed to obtain surface fitting for resistance characteristic of different grouping modes under various state of charge (SOC). Through simulation, the maximum fitting error is within 3.6%. As an aside, optimal grouping way of single stack can be achieved via minimizing resistance of single stack, conducted by particle swarm optimization algorithm.

Key words: energy storage, Butterfly algorithms, group technology, particle swarm optimization