储能科学与技术 ›› 2016, Vol. 5 ›› Issue (5): 649-658.doi: 10.12028/j.issn.2095-4239.2016.0030

• 特约评述 • 上一篇    下一篇

硫化物固体电解质的研究进展

许阳阳,李全国,梁成都,林  展   

  1. 浙江大学 化学工程与生物工程学院,生物质化工教育部重点实验室,浙江 杭州 310027
  • 收稿日期:2016-06-08 修回日期:2016-06-18 出版日期:2016-09-01 发布日期:2016-09-01
  • 通讯作者: 林展,教授,博士生导师,从事高性能储能材料的研究,E-mail:zhanlin@zju.edu.cn。
  • 作者简介:许阳阳(1990—),女,硕士研究生,从事高性能锂硫电池的研究,E-mail:cpxqxyy@126.com
  • 基金资助:
    中组部“青年千人计划”,浙江省杰出青年基金(LR16B060001)和上海航天科技创新基金项目(SAST2015105)。

Research progress of solid electrolytes

XU Yangyang, LI Quanguo, LIANG Chengdu, LIN Zhan   

  1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2016-06-08 Revised:2016-06-18 Online:2016-09-01 Published:2016-09-01

摘要: 商业化的锂离子电池大多采用有机液体作为电解质体系,有机液体电解质在电池的工作过程中,会发生泄漏、挥发、燃烧甚至爆炸,存在严重的安全隐患,研究高效、环保、安全的电解质是解决这一问题的主要途径。固体电解质取代传统的液体电解质,不仅可以在传输导锂的同时抑制锂枝晶的生长,而且具有高的机械强度,简化电池的制备工艺,降低电池的制造成本。由于具有以上的优点,固体电解质的研发不断引起人们的广泛关注。本文综述了硫化物固体电解质的研究进展,包括二元和三元硫化物固体电解质,同时讨论了掺杂改性或复合改性对其性能影响,并展望了硫化物固体电解质未来的发展方向。

关键词: 固体电解质, 二元硫化物体系, 三元硫化物体系, 改性, 储能

Abstract: Organic liquids are mostly used as an electrolyte system in commercial lithium-ion batteries. Currently organic liquids electrolytes have certain safety issues caused by the inflammability, explosiveness and leakiness. All solid state lithium ion battreies used inorganic solid electrolytes offer a fundamental solution to the safety issues of conventional lithium ion battreies containing organic electrolytes. The inorganic solid electrolyte has attracted much people's attention recently because of its great advantages: Inhibition the dentrite formation in lithium anodes, the high mechanical robustness, simplification the preparation technology of battery, reducing the manufacturing cost of the battery. This article presents a brief review of the researches on binary sulfide system, ternary sulfide system, preparation and modifications. The prospects of the solid electrolytes are also stated.

Key words: solid electrolyte, binary sulfide system, ternary sulfide system, modification, energy storage