[1] LI X F,LIU J,BANIS M N,et al. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application[J]. Energy & Environmental Science,2014,7(2):768-778.
[2] CHEN R J,HUANG M,HUANG W Z,et al. Sol-gel derived Li-La-Zr-O thin films as solid electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A,2014,2(33):13277-13282.
[3] KOZEN A C,PEARSE A J,LIN C F,et al. Atomic layer deposition of the solid electrolyte LiPON[J]. Chemistry of Materials,2015,27(15):5324-5331.
[4] TANG W S,UNEMOTO A,ZHOU W,et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions[J]. Energy & Environmental Science,2015,8(12):3637-3645.
[5] DENG Y,EAMES C,CHOTARD J N,et al. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4- Li3PO4 solid electrolytes[J]. Journal of the American Chemical Society,2015,137(28):9136-9145.
[6] ZHENG Z F,FANG H Z,YANG F,et al. Amorphous LiLaTiO3 as solid electrolyte material[J]. Journal of the Electrochemical Society,2014,161(4):A473-A479.
[7] XIONG S Z,XIE K,BLOMBERG E,et al. Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries[J]. Journal of Power Sources,2014,252:150-155.
[8] LEE S H,YOU H G,HAN K S,et al. A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode[J]. Journal of Power Sources,2014,247:307-313.
[9] BUCHTOVA N,GUYOMARDLACK A,LEBIDEAU J. Biopolymer based nanocomposite ionogels:High performance, sustainable and solid electrolytes[J]. Green Chemistry,2014,16(3):1149-1152.
[10] BORDES A,EOM K,FULLER T F. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources,2014,257:163-169.
[11] KIM J K,SCHEERS J,PARK T J,et al. Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries[J]. ChemSusChem,2015,8(4):636-641.
[12] PRADEL A,RIBES M. Electrical-properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching[J]. Solid State Ionics,1986,18-9:351-355.
[13] KUHN A,GERBIG O,ZHU C B,et al. A new ultrafast superionic Li-conductor:Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics,2014,16(28):14669-14674.
[14] LIN Z,LIANG C D. Lithium-sulfur batteries:From liquid to solid cells[J]. Journal of Materials Chemistry A,2015,3(3):936-958.
[15] LIN Z,LIU Z C,DUDNEY N J,et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano,2013,7(3):2829-2833.
[16] LIN Z,LIU Z C,FU W J,et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2013,23(8):1064-1069.
[17] YAMANE H,SHIBATA M,SHIMANE Y,et al. Crystal structure of a superionic conductor, Li7P3S11[J]. Solid State Ionics,2007,178(15/16/17/18):1163-1167.
[18] PHUC N H,MORIKAWA K,TOTANI M,et al. Chemical synthesis of Li3PS4 precursor suspension by liquid-phase shaking[J]. Solid State Ionics,2016,285:2-5.
[19] MINAMI K,MIZUNO F,HAYASHI A,et al. Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method[J]. Solid State Ionics,2007,178(11/12):837-841.
[20] LIU Z C,FU W J,PAYZANT E A,et al. Anomalous high ionic conductivity of nanoporous beta-Li3PS4[J]. Journal of the American Chemical Society,2013,135(3):975-978.
[21] KATO A,NAGAO M,SAKUDA A,et al. Evaluation of young's modulus of Li2S-P2S5-P2O5 oxysulfide glass solid electrolytes[J]. Journal of the Ceramic Society of Japan,2014,122(1427):552-555.
[22] MINAMI K,HAYASHI A,TATSUMISAGO M. Mechanochemical synthesis of Li2S-P2S5 glass electrolytes with lithium salts[J]. Solid State Ionics,2010,181(33/34):1505-1509.
[23] MINAMI K,HAYASHI A,UJIIE S,et al. Electrical and electroc- hemical properties of glass-ceramic electrolytes in the systems Li2S-P2S5-P2S3 and Li2S-P2S5-P2O5[J]. Solid State Ionics,2011, 192(1):122-125.
[24] TATSUMISAGO M. Glassy materials based on Li2S for all-solid-state lithium secondary batteries[J]. Solid State Ionics,2004,175(1/2/3/4):13-18.
[25] MORIMOTO H,YAMASHITA H,TATSUMISAGO M,et al. Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4[J]. Journal of the Ceramic Society of Japan,2000,108(2):128-131.
[26] SAKAMOTO R,TATSUMISAGO M,MINAMI T. Preparation of fast lithium ion conducting glasses in the system Li2S-SiS2-Li3N[J]. Journal of Physical Chemistry B,1999,103(20):4029-4031.
[27] HAYASHI A,KOMIYA R,TATSUMISAGO M,et al. Character- ization of Li2S-SiS2-Li3MO3 (M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries[J]. Solid State Ionics,2002,152:285-290.
[28] MORI K,FURUTA K,ONODERA Y,et al. Three-dimensional structures and lithium-ion conduction pathways of (Li2S)x(GeS2)100-x superionic glasses[J]. Solid State Ionics,2015,280:44-50.
[29] ITO Y,SAKUDA A,OHTOMO T,et al. Preparation of Li2S-GeS2 solid electrolyte thin films using pulsed laser deposition[J]. Solid State Ionics,2013,236:1-4.
[30] ITOH K,SONOBE M,MORI K,et al. Structural observation of Li2S-GeS2 superionic glasses[J].Physica B Condensed Matter,2006,385:520-522.
[31] KIM Y,SAIENGA J,MARTIN S W. Anomalous ionic conductivity increase in Li2S+GeS2+GeO2 glasses[J]. Journal of Physical Chemistry B,2006,110(33):16318-16325.
[32] KANNO R,HATA T,KAWAMOTO Y,et al. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics,2000,130(1/2):97-104.
[33] YAMAMOTO H,MACHIDA N,SHIGEMATSU T. A mixed-former effect on lithium-ion conductivities of the Li2S-GeS2-P2S5 amorphous materials prepared by a high-energy ball-milling process[J]. Solid State Ionics,2004,175(1/2/3/4):707-711.
[34] TREVEY J E,JUNG Y S,LEE S H. High lithium ion conducting Li2S-GeS2-P2S5 glass-ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries[J]. Electrochimica Acta,2011,56(11):4243-4247.
[35] HASSOUN J,VERRELLI R,REALE P,PANERO S,et al. A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. Journal of Power Sources,2013,229:117-122.
[36] MINAMI K,HAYASHI A,TATSUMISAGO M. Preparation and characterization of lithium ion conducting Li2S-P2S5-GeS2 glasses and glass-ceramics[J]. Journal of Non-Crystalline Solids,2010,356(44/45/46/47/48/49):2666-2669.
[37] KANNO R,MARUYAMA M. Lithium ionic conductor thio- LISICON:The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society,2001,148(7):A742-A746.
[38] KUHN A,DUPPEL V,LOTSCH B V. Tetragonal Li10GeP2S12 and Li7GePS8-exploring the Li ion dynamics in LGPS Li electrolytes[J]. Energy & Environmental Science,2013,6(12):3548-3552.
[39] WHITELEY J M,WOO J H,HU E Y,et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. Journal of the Electrochemical Society,2014,161(12):A1812-A1817.
[40] ONG S P,MO Y,RICHARDS W D,et al. Phase stability, electrochemical stability and ionic conductivity of the Li10+1MP2X12 (M=Ge, Si, Sn, Al or P and X = O, S or Se) family of superionic conductors[J]. Energy & Environmental Science,2013,6(1):148-156.
[41] BRON P,JOHANSSON S,ZICK K,et al. Li10SnP2S12:An affordable lithium superionic conductor[J]. Journal of the American Chemical Society,2013,135(42):15694-15697.
[42] SAHU G,LIN Z,LI J C,et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy & Environmental Science,2014,7(3):1053-1058.
[43] TREVEY J E,JUNG Y S,LEE S H. Preparation of Li2S-GeSe2-P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries[J]. Journal of Power Sources,2010,195(15):4984-4989.
[44] SAHU G,RANGASAMY E,LI J C,et al. A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy[J]. Journal of Materials Chemistry A,2014,2(27):10396-10403.
[45] KATO Y,HORI S,SAITO T,et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy,2016,1(4):doi:10.1038/nenergy.2016.30.
[46] HAYASHI A,MURAMATSU H,OHTOMO T,et al. Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries[J]. Journal of Alloys and Compounds,2014,591: 247-250. |