[1] BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3):R1-R25.
[2] 刘力硕, 张明轩, 卢兰光, 等. 锂离子电池内短路机理与检测研究进展[J]. 储能科学与技术, 2018, 7(6):1003-1015. LIU Lishuo, ZHANG Mmingxuan, LU Languang, et al. Recent progress on mechanism and detection of internal short circuit in lithium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6):1003-1015.
[3] VELUCHAMY A, DOH C H, KIM D H, et al. Thermal analysis of LixCoO2 cathode material of lithium ion battery[J]. Journal of Power Sources, 2009, 189(1):855-858.
[4] SMITH K, KIM G H, DARCY E, et al. Thermal/electrical modeling for abuse-tolerant design of lithium ion modules[J]. International Journal of Energy Research, 2010, 34(2):204-215.
[5] BAGINSKA M, BLAISZIK B J, MERRIMAN R J, et al. Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres[J]. Advanced Energy Materials, 2012, 2(5):583-590.
[6] FENG X M, AI X P, YANG H X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries[J]. Electrochemistry Communications, 2004, 6(10):1021-1024.
[7] JI W, WANG F, LIU D, et al. Building thermally stable Li-ion batteries using a temperature-responsive cathode[J]. Journal of Materials Chemistry A, 2016, 4(29):11239-11246.
[8] XIA L, LI S L, AI X P, et al. Temperature-sensitive cathode materials for safer lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8):2845-2848.
[9] KISE M, YOSHIOKA S, HAMANO K, et al. Alternating current impedance behavior and overcharge tolerance of lithium-ion batteries using positive temperature coefficient cathodes[J]. Journal of The Electrochemical Society, 2006, 153(6):A1004-A1011.
[10] KISE M, YOSHIOKA S, KURIKI H. Relation between composition of the positive electrode and cell performance and safety of lithium-ion PTC batteries[J]. Journal of Power Sources, 2007, 174(2):861-866.
[11] ZHONG H, KONG C, ZHAN H, et al. Safe positive temperature coefficient composite cathode for lithium ion battery[J]. Journal of Power Sources, 2012, 216:273-280.
[12] 李惠, 吉维肖, 曹余良, 等. 锂离子电池热失控防范技术[J]. 储能科学与技术, 2018, 7(3):376-383. LI Hui, JI Weixiao, CAO Yuliang, et al. Thermal runaway-preventing technologies for lithium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(3):376-383.
[13] 吴迪. 聚乙烯蜡的亲水改性及乳化研究[D]. 长春:长春工业大学, 2018. WU Di. Study on the hydrophilic modification of polyethylene wax and it's emulsification[D]. Changchun:Changchun University of Technology, 2018.
[14] 张幸珂, 曹祖宾, 韩冬云, 等. 聚乙烯副产物聚乙烯蜡的热解及轻质馏分的GC-MS分析[J]. 化工环保, 2018, 38(3):358-362. ZHANG Xingke, CAO Zubing, HAN Dongyun, et al. Pyrolysis of polyethylene by-product polyethylene wax and GC-MS analysis of light fraction[J]. Environmental Protection of Chemical Industry, 2018, 38(3):358-362.
[15] 王素敏, 李璐, 王奇观, 等. 水性共价连接型聚苯胺/碳纳米管复合材料的制备及电学性能[J]. 合成材料老化与应用, 2018, 47(2):37-41. WANG Sumin, LI Lu, WANG Qiguan, et al. Preparation and conductivity of the water-borne covalently-linked polyaniline/carbon nanotube composite[J]. Synthetic Materials Aging and Application, 2018, 47(2):37-41.
[16] SILAKHORI M, NAGHAVI M S, METSELAAR H S C, et al. Accelerated thermal cycling test of microencapsulated paraffn wax/polyaniline made by simple preparation method for solar thermal energy storage[J]. Materials, 2013, 6(5):1608-1620.
[17] 王香琴, 辛斌杰, 许鉴. 导电聚苯胺的制备及其表征[J]. 材料导报, 2013, 27(16):86-90. WANG Xiangqin, XIN Bingjie, XU Jian. Synthesis and Characterization of Polyaniline Membrane[J]. Materials Reports, 2013, 27(16):86-90.
[18] XU X, XIAO H, GUAN Y, et al. Permanent antistatic polypropylene based on polyethylene wax/polypropylene wax grafting sodium acrylate[J]. Journal of Applied Polymer Science, 2012, 126(1):83-90.
[19] 钱龙, 饶睦敏, 朱丹, 等. 阻燃剂在锂离子电池中的应用[J]. 电池, 2015, 45(6):319-321. QIAN Long, RAO Mumin, ZHU Dan, et al. The application of flame retardants in Li-ion battery[J]. Battery Bimonthly, 2015, 45(6):319-321.
[20] 张世明, 车海英, 杨柯, 等. 基于LiFePO4和活性炭的混合型电化学储能器件研究[J]. 储能科学与技术, 2018, 7(2):240-247. ZHANG Shiming, CHE Haiying, YANG Ke, et al. Development of hybrid electrochemical energy storage device based on LiFePO4 and activated carbon[J]. Energy Storage Science and Technology, 2018, 7(2):240-247.
[21] PARK C K, RUBINO R. Thermally stable electrolyte for lithium-ion batteries[J]. ECS Transactions, 2014, 58(26):1-9.
[22] 景燕, 刘亚飞, 陈彦彬. 锂电正极材料开发用纽扣电池测试技术研究[J]. 广东化工, 2017, 44(18):55-56+41. JING Yan, LIU Yafei, CHEN Yanbing. Research on the technology of the coin cell test for lithium-ion battery cathode materials[J]. Guangdong Chemical Industry, 2017, 44(18):55-56+41. |