1 |
International Renewable Energy Agency. Renewable capacity statistics 2019[R].
|
2 |
张新敬, 陈海生, 刘金超,等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 36-50.
|
|
ZHANG X J, CHEN H S, LIU J C, et al. Research progress of compressed air energy storage technology [J]. Energy Storage Science and Technology, 2012, 1(1): 36-50.
|
3 |
SUCCAR S, WILLIAMS R H. Compressed air energy storage: theory, resources, and applications for wind power[J]. Princeton Environmental Institute Report, 2008, 8: 81.
|
4 |
AMEEL B, T'JOEN C, DE KERPEL K, et al. Thermodynamic analysis of energy storage with a liquid air Rankine cycle[J]. Applied Thermal Engineering, 2013, 52(1): 130-140.
|
5 |
CHEN H S, TAN C Q, LIU J, et al. Energy storage system using supercritical air: U S 9217423[P]. 2015-12-22.
|
6 |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system[J]. Applied Energy, 2017, 199: 96-106.
|
7 |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115: 167-177.
|
8 |
LI Y L, CHEN H S, ZHANG X J, et al. Renewable energy carriers: Hydrogen or liquid air/nitrogen?[J]. Applied Thermal Engineering, 2010, 30(14/15): 1985-1990.
|
9 |
LI Y L, CAO H, WANG S H, et al. Load shifting of nuclear power plants using cryogenic energy storage technology[J]. Applied Energy, 2014, 113: 1710-1716.
|
10 |
Li Y L, SCIACOVELLI A, PENG X D, et al. Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas[J]. Applied Energy, 2016, 171: 26-36.
|
11 |
MORGAN R E. Liquid air energy storage-from theory to demonstration[J]. International Journal of Environmental Studies, 2016, 73(3): 469-480.
|
12 |
MORGAN R, NELMES S, GIBSON E, et al. An analysis of a large-scale liquid air energy storage system[J]. Proceedings of the Institution of Civil Engineers-Energy, 2015, 168(2): 135-144.
|
13 |
MORGAN R, NELMES S, GIBSON E, et al. Liquid air energy storage-analysis and first results from a pilot scale demonstration plant[J]. Applied Energy, 2015, 137: 845-853.
|
14 |
KANTHARAJ B, GARVEY S, PIMM A. Compressed air energy storage with liquid air capacity extension[J]. Applied Energy, 2015, 157: 152-164.
|
15 |
KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable Energy Technologies and Assessments, 2015, 11: 159-164.
|
16 |
SCIACOVELLI A, VECCHI A, DING Y L. Liquid air energy storage (LAES) with packed bed cold thermal storage-From component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84-98.
|
17 |
MORGAN R, NELMES S, GIBSON E, et al. Liquid air energy storage—Analysis and first results from a pilot scale demonstration plant[J]. Applied Energy, 2015, 137: 845-853.
|
18 |
GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system[J]. Energy, 2015, 93: 1639-1647.
|
19 |
PENG X D, SHE X H, CONG L, et al. Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage[J]. Applied Energy, 2018, 221: 86-99.
|
20 |
SCIACOVELLI A, SMITH D, NAVARRO M E, et al. Performance analysis and detailed experimental results of the first liquid air energy storage plant in the world[J]. Journal of Energy Resources Technology, 2018, 140(2): 020908.1-020908.10..
|
21 |
HUTTERMANN L, SPAN R. Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems[J]. Energy, 2019, 174: 236-245.
|