| 1 | FANG G Z, ZHOU J, PAN A Q, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501. | 
																													
																						| 2 | SONG M, TAN H, CHAO D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): doi: 10.1002/j.adfm.201802564. | 
																													
																						| 3 | LI H F, MA L T, HAN C P, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587. | 
																													
																						| 4 | MING J, GUO J, XIA C, et al. Zinc-ion batteries: Materials, mechanisms, and applications[J]. Materials Science and Engineering: Reports, 2019, 135: 58-84. | 
																													
																						| 5 | SELVAKUMARAN D, PAN A Q, LIANG S Q, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(31): 18209-18236. | 
																													
																						| 6 | LIU Z X, HUANG Y, HUANG Y, et al. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chemical Society Reviews, 2020, 49(1): 180-232. | 
																													
																						| 7 | YU P, ZENG Y X, ZHANG H Z, et al. Flexible Zn-ion batteries: Recent progresses and challenges[J]. Small, 2019, 15(7): doi: 10.1002/smll.201804760. | 
																													
																						| 8 | TROCOLI R, LA MANTIA F. An aqueous zinc-ion battery based on copper hexacyanoferrate[J]. ChemSusChem, 2015, 8(3): 481-485. | 
																													
																						| 9 | ZHANG L Y, CHEN L, ZHOU X F, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system[J]. Advanced Energy Materials, 2015, 5(2): doi: 10.1002/aenm.201400930. | 
																													
																						| 10 | GUO C, LIU H M, LI J F, et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery[J]. Electrochimica Acta, 2019, 304: 370-377. | 
																													
																						| 11 | KHAMSANGA S, PORNPRASERTSUK R, YONEZAWA T, et al. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries[J]. Scientific Reports, 2019, 9(1): doi: 10.1038/s41598-019-44915-8. | 
																													
																						| 12 | WANG C Y, WANG M Q, HE Z C, et al. Rechargeable aqueous zinc-manganese dioxide/graphene batteries with high rate capability and large capacity[J]. ACS Applied Energy Materials, 2020, 3(2): 1742-1748. | 
																													
																						| 13 | CHEN L L, YANG Z H, HUANG Y G. Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries[J]. Nanoscale, 2019, 11(27): 13032-13039. | 
																													
																						| 14 | JIA D D, ZHENG K, SONG M, et al. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries[J]. Nano Research, 2020, 13(1): 215-224. | 
																													
																						| 15 | ZHANG L S, MIAO L, ZHANG B, et al. A durable VO2(M)/Zn battery with ultrahigh rate capability enabled by pseudocapacitive proton insertion[J]. Journal of Materials Chemistry A, 2020, 8(4): 1731-1740. | 
																													
																						| 16 | YAN M Y, HE P, CHEN Y, et al. Water-lubricated intercalation in V2O5·nH2O for high capacity and high-rate aqueous rechargeable zinc batteries[J]. Advanced Materials, 2018, 30(1): doi: 10.1002/adma.201703725. | 
																													
																						| 17 | ZHANG N, DONG Y, JIA M, et al. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life[J]. ACS Energy Letters, 2018, 3(6): 1366-1372. | 
																													
																						| 18 | CHEN L L, YANG Z H, CUI F, et al. Enhanced rate and cycling performances of hollow V2O5 nanospheres for aqueous zinc ion battery cathode[J]. Applied Surface Science, 2020, 507: doi: 10.1016/j.apsusc.2019.145137. | 
																													
																						| 19 | JAVED M S, LEI H, WANG Z L, et al. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries[J]. Nano Energy, 2020, 70: doi: 10.1016/j.nanoen.2020.104573. | 
																													
																						| 20 | WANG X Y, MA L W, ZHANG P C, et al. Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability[J]. Applied Surface Science, 2020, 502: doi: 10.1016/j.apsusc.2019.144207. | 
																													
																						| 21 | HU F, XIE D, ZHAO F, et al. Na2V6O16∙2.14H2O nanobelts as a stable cathode for aqueous zinc-ion batteries with long-term cycling performance[J]. Journal of Energy Chemistry, 2019, 38: 185-191. | 
																													
																						| 22 | MING F W, LIANG H F, LEI Y J, et al. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2602-2609. | 
																													
																						| 23 | HE P, YAN M Y, ZHANG G B, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode[J]. Advanced Energy Materials, 2017, 7(11): doi: 10.1002/aenm.201601920. | 
																													
																						| 24 | 黄永烽, 黄文婷, 刘文宝, 等. 锌离子电池正极材料V2O5的储能机理和容量衰减原因[J]. 高等学校化学学报, 2020, 41(8): 1859-1865.HUANG Y F, HUANG W T, LIU W B, et al. Mechanism of storage and capacity attenuation of V2O5 as cathode of zinc-ion battery[J]. Chemical Journal of Chinese Universities, 2020, 41(8): 1859-1865. | 
																													
																						| 25 | WAN F, NIU Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(46): 16358-16367. | 
																													
																						| 26 | JIN T LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377. | 
																													
																						| 27 | ZHANG J, LIU Y C, ZHAO X D, et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries[J]. Advanced Materials, 2020, 32(11): doi: 10.1002/adma.201906348. | 
																													
																						| 28 | ZHENG Q, YI H M, LI X F, et al. Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(6): 1597-1617. | 
																													
																						| 29 | ZHANG X X, MA J, HU P, et al. An insight into failure mechanism of NASICON-structured Na3V2(PO4)3 in hybrid aqueous rechargeable battery[J]. Journal of Energy Chemistry, 2019, 32: 1-7. | 
																													
																						| 30 | 易红明, 吕志强, 张华民, 等. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369.YI H M, LYU Z Q, ZHANG H M, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. | 
																													
																						| 31 | LI G L, YANG Z, JIANG Y, et al. Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3[J]. Nano Energy, 2016, 25: 211-217. | 
																													
																						| 32 | HU P, ZHU T, WANG X P, et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation[J]. Nano Energy, 2019, 58: 492-498. | 
																													
																						| 33 | HU P, YAN M Y, ZHU T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42717-42722. | 
																													
																						| 34 | HUANG S, ZHU J C, TIAN J L, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries[J]. Chemistry—A European Journal, 2019, 25(64): 14480-14494. | 
																													
																						| 35 | WAN F, ZHANG Y, ZHANG L L, et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(21): 7062-7067. | 
																													
																						| 36 | LIU S C, ZHU H, ZHANG B H, et al. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance[J]. Advanced Materials, 2020, 32(26): doi: 10.1002/adma.202001113. | 
																													
																						| 37 | WANG X Y, MA L W, SUN J C. Vanadium pentoxide nanosheets in-situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41297-41303. |