1 |
李永峰, 李巧燕, 程国玲. 基础环境科学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015.
|
2 |
张志强. 国际科学技术前沿报告—2019[M]. 北京: 科学出版社, 2020.
|
3 |
FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291.
|
4 |
LI Y T, XU H H, CHIEN P H, et al. A perovskite electrolyte that is stable in moist air for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(28): 8587-8591.
|
5 |
刘鲁静, 贾志军, 郭强, 等. 全固态锂离子电池技术进展及现状[J]. 过程工程学报, 2019, 19(5): 900-909.
|
|
LIU L J, JIA Z J, GUO Q, et al. Research progress and current status of all-solid-state lithium battery[J]. The Chinese Journal of Process Engineering, 2019, 19(5): 900-909.
|
6 |
陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1): 21-34.
|
|
CHEN L, CHI S S, DONG Y, et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 21-34.
|
7 |
KRAVCHYK K V, OKUR F, KOVALENKO M V. Break-even analysis of all-solid-state batteries with Li-garnet solid electrolytes[J]. ACS Energy Letters, 2021, 6(6): 2202-2207.
|
8 |
吕璐, 周雷, TUFAIL M K, 等. 高离子电导率硫化物固态电解质的空气稳定性研究进展[J]. 中国科学: 化学, 2020, 50(9): 1031-1044.
|
|
LU L, ZHOU L, TUFAIL M K, et al. Advances in air stability of sulfide solid electrolytes with high ion conductivity[J]. Scientia Sinica (Chimica), 2020, 50(9): 1031-1044.
|
9 |
CUI Y, WAN J, YE Y, et al. A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries[J]. Nano Letters, 2020, 20(3): 1686-1692.
|
10 |
TANG S, LAN Q, XU L, et al. A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery[J]. Nano Energy, 2020, 71: doi:10.1016/j.nanoen.2020.104600.
|
11 |
WANG Y, ZANELOTTI C J, WANG X, et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nature Materials, 2021, 20(9): 1255-1263.
|
12 |
FAN L Z, HE H C, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019.
|
13 |
KIM D H, LEE Y H, SONG Y B, et al. Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5(3): 718-727.
|
14 |
LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308.
|
15 |
PAN K, ZHANG L, QIAN W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials, 2020, 32(17): doi:10.1002/adma.202000399.
|
16 |
ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239.
|
17 |
ALBERTUS P, ANANDAN V, BAN C M, et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries[J]. ACS Energy Letters, 2021, 6(4): 1399-1404.
|
18 |
TIAN Y, ZENG G, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669.
|
19 |
CAO D X, SUN X, LI Q, et al. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations[J]. Matter, 2020, 3(1): 57-94.
|
20 |
CHENG E J, SHARAFI A, SAKAMOTO J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochimica Acta, 2017, 223: 85-91.
|
21 |
HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196.
|