1 |
YANG C, FU K, ZHANG Y, et al. Protected lithium-metal anodes in batteries: From liquid to solid[J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(36): 1-28.
|
2 |
KITTNER N, LILL F, KAMMEN D M. Energy storage deployment and innovation for the clean energy transition[J]. Nature Energy, 2017, 2: 17125.
|
3 |
SHI Y, TAN D, LI M Q, et al. Nanohybrid electrolytes for high-energy lithium-ion batteries: Recent advances and future challenges[J]. Nanotechnology, 2019, 30(30): doi: 10.1088/1361-6528/ab0fb2.
|
4 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
5 |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243.
|
6 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
7 |
LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): 2-11.
|
8 |
LI W D, ERICKSON E M, MANTHIRAM A. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nature Energy, 2020, 5(1): 26-34.
|
9 |
QIU Z,ZHANG Y,XIAS, et al.Research progress oninterface properties of inorganic solid-state lithium-ion batteries[J]. Acta Chimica Sinica, 2015,73(10): 992-1001.
|
10 |
TAKADA K. Progress in solid electrolytes toward realizing solid-state lithium batteries[J]. Journal of Power Sources, 2018, 394: 74-85.
|
11 |
GORECKI W, JEANNIN M, BELORIZKY E, et al. Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes[J]. Journal of Physics: Condensed Matter, 1995, 7(34): 6823-6832.
|
12 |
ZHAO Y R, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 301: 47-53.
|
13 |
DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1): 82-85.
|
14 |
HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: 15893.
|
15 |
WEISS M, WEBER D A, SENYSHYN A, et al. Correlating transport and structural properties in Li1+ xAlxGe2- x(PO4)3 (LAGP) prepared from aqueous solution[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10935-10944.
|
16 |
UHLMANN C, BRAUN P, ILLIG J, et al. Interface and grain boundary resistance of a lithium lanthanum titanate (Li3 xLa2/3- xTiO3, LLTO) solid electrolyte[J]. Journal of Power Sources, 2016, 307: 578-586.
|
17 |
TATSUMISAGO M, NAGAO M, HAYASHI A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries[J]. Journal of Asian Ceramic Societies, 2013, 1(1): 17-25.
|
18 |
KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030.
|
19 |
ZHANG W Q, NIE J H, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419.
|
20 |
WAN Z P, LEI D N, YANG W, et al. All-solid-state batteries: Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): doi: 10.1002/adfm. 201970006.
|
21 |
CHEN F, YANG D J, ZHA W P, et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries[J]. Electrochimica Acta, 2017, 258: 1106-1114.
|
22 |
ZHANG Z, HUANG Y, GAO H, et al. 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries[J]. Journal of Membrane Science, 2021, 621: doi: 10.1016/j.memsci. 2020.118940.
|
23 |
YANG X F, SUN Q, ZHAO C T, et al. High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes[J]. Nano Energy, 2019, 61: 567-575.
|