1 |
MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Letters, 2021, 6(2): 621-630.
|
2 |
甘露雨, 陈汝颂, 潘弘毅, 等. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865.
|
|
GAN L Y, CHEN R S, PAN H Y, et al. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods[J]. Energy Storage Science and Technology, 2022, 11(3): 852-865.
|
3 |
王莉, 谢乐琼, 田光宇, 等. 锂离子电池安全事故:安全性问题,还是可靠性问题[J]. 储能科学与技术, 2021, 10(1): 1-6.
|
|
WANG L, XIE L Q, TIAN G Y, et al. Safety accidents of Li-ion batteries: Reliability issues or safety issues[J]. Energy Storage Science and Technology, 2021, 10(1): 1-6.
|
4 |
LI K Y, DAN T. Research and design of inspection of LR6 battery negative surface scratches online defects based on computer vision[C]//2013 International Conference on Communications, Circuits and Systems (ICCCAS). Chengdu, China. IEEE: 120-123.
|
5 |
XU C L, LI L S, LI J W, et al. Surface defects detection and identification of lithium battery pole piece based on multi-feature fusion and PSO-SVM[J]. IEEE Access, 9: 85232-85239.
|
6 |
LU H L, YAN J. Window frame obstacle edge detection based on improved Canny operator[C]//2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). Xiamen, China. IEEE, : 493-496.
|
7 |
黄梦涛, 连一鑫. 基于改进Canny算子的锂电池极片表面缺陷检测[J]. 仪器仪表学报, 2021, 42(10): 199-209.
|
|
HUANG M T, LIAN Y X. Lithium battery electrode plate surface defect detection based on improved Canny operator[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 199-209.
|
8 |
钟智彦. 面向高密度柔性IC封装基板的显微成像检测算法及关键技术研究[D]. 广州: 华南理工大学, 2019.
|
|
ZHONG Z Y. The research of micro-imaging inspection algorithms and key technology for high density flexible IC packaging substrate[D]. Guangzhou: South China University of Technology, 2019.
|
9 |
毕秀丽, 邱雨檬, 肖斌, 等. 基于统计特征的图像直方图均衡化检测方法[J]. 计算机学报, 2021, 44(2): 292-303.
|
|
BI X L, QIU Y M, XIAO B, et al. Histogram equalization detection based on statistical features in digital image[J]. Chinese Journal of Computers, 2021, 44(2): 292-303.
|
10 |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
|
11 |
WANG B, FAN S S. An improved CANNY edge detection algorithm[C]//2009 Second International Workshop on Computer Science and Engineering. Qingdao, China. IEEE, : 497-500.
|
12 |
XIONG C Z, CHEN L C, PANG Y G. An adaptive bilateral filtering algorithm and its application in edge detection[C]//2010 International Conference on Measuring Technology and Mechatronics Automation. Changsha, China. IEEE, : 440-443.
|
13 |
王伟江, 彭业萍, 曹广忠, 等. 面向机柜表面缺陷检测的不均匀光照和低亮度图像增强方法[J]. 仪器仪表学报, 2019, 40(8): 131-139.
|
|
WANG W J, PENG Y P, CAO G Z, et al. Non-uniform and low illumination image enhancement for cabinet surface defect detection[J]. Chinese Journal of Scientific Instrument, 2019, 40(8): 131-139.
|
14 |
汤勃, 孔建益, 王兴东, 等. 钢板表面低对比度微小缺陷图像增强和分割[J]. 中国图象图形学报, 2020, 25(1): 81-91.
|
|
TANG B, KONG J Y, WANG X D, et al. Image enhancement and segmentation algorithm for low-contrast small defects on steel plate[J]. Journal of Image and Graphics, 2020, 25(1): 81-91.
|
15 |
SHEN X Z, ZENG W, GUO Y L, et al. Edge detection algorithm of plant leaf image based on improved Canny[C]//2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). Xi'an, China. IEEE, : 342-345.
|
16 |
陈功, 朱锡芳, 许清泉, 等. 最大熵和高斯模型在锂电池缺陷识别中的应用[J]. 电源技术, 2014, 38(6): 1063-1065.
|
|
CHEN G, ZHU X F, XU Q Q, et al. Application of maximum entropy threshold and Gaussian mixture model in defects recognition of lithium battery[J]. Chinese Journal of Power Sources, 2014, 38(6): 1063-1065.
|