储能科学与技术 ›› 2022, Vol. 11 ›› Issue (12): 3872-3882.doi: 10.19799/j.cnki.2095-4239.2022.0418
收稿日期:
2022-07-27
修回日期:
2022-07-30
出版日期:
2022-12-05
发布日期:
2022-12-29
通讯作者:
丁凯
E-mail:douyan28859@163.com
作者简介:
丁凯(1974—),男,博士,高级工程师,研究方向为电能质量与优质供电,E-mail:douyan28859@163.com。
基金资助:
Kai DING(), Yimin QIAN, Qiao CHEN, Jian ZHENG, Yi WANG
Received:
2022-07-27
Revised:
2022-07-30
Online:
2022-12-05
Published:
2022-12-29
Contact:
Kai DING
E-mail:douyan28859@163.com
摘要:
锂离子电池可作为后备电源为电力系统的一次设备、二次设备及通信管理等提供不同等级的交直流电,保证核心设备紧急时刻仍然能够正常工作。先串后并的并联型储能系统不仅因并联模组的互为备用具有更高的可靠性,也能够避免传统串联型后备电源的木桶效应问题。然而,并联型方案会因模组之间的不一致,使得各模组寿命呈现差异性;串联电池组组内电压分布差异,也会导致电池单体过充或者过放。为此提出了一种针对并联型锂离子电池储能系统的多时间尺度均衡方法。首先,对电池模组组内单体以荷电状态(state of charge,SOC)为指标进行旁路均衡,使电池组在单次充放电循环的短时间尺度达到组内均衡;然后,通过并联电池模组组间的寿命均衡,使系统在寿命衰减的长时间尺度达到平衡。所提均衡方法能够提高并联型储能系统使用过程中模组间的一致性,增强并联模组互为备用的可靠性,降低运维成本,提高锂离子电池的使用效率。为了验证该均衡方法,在电池加速老化实验的基础上,搭建仿真模型验证了所提方法在不同条件下的有效性。
中图分类号:
丁凯, 钱一民, 陈乔, 郑剑, 王易. 锂离子电池储能系统多时间尺度均衡方法[J]. 储能科学与技术, 2022, 11(12): 3872-3882.
Kai DING, Yimin QIAN, Qiao CHEN, Jian ZHENG, Yi WANG. Multitimescale equalization method for lithium-ion battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(12): 3872-3882.
1 | 汤秀芬, 米晨. 通信后备锂电池组均衡充电方式的探析[J]. 电源技术, 2020, 44(9): 1348-1350, 1374. |
TANG X F, MI C. Analysis of equalization charging modes of communications standby lithium-ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(9): 1348-1350, 1374. | |
2 | 黄威皓, 肖逸军, 焦冠文, 等. 油气场站通信后备电源优化方案与应用探讨[J]. 中国设备工程, 2022(11): 103-104. |
HUANG W H, XIAO Y J, JIAO G W, et al. Exploration on the optimization scheme and application of communication backup power supply for oil and gas field stations[J]. China Plant Engineering, 2022(11): 103-104. | |
3 | YI Tingfeng, MEI Jie, ZHU Yanrong. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries[J]. Journal of Power Sources, 2016, 316: 85-105. |
4 | 李国丽, 张永杰. 基于STM32的通信用后备锂电池组管理系统的研究与设计[J]. 电气自动化, 2012, 34(4): 18-19, 25. |
LI G L, ZHANG Y J. A kind of back-up lithium-ion battery management system for telecommunications based on STM32[J]. Electrical Automation, 2012, 34(4): 18-19, 25. | |
5 | 黄涛, 谭晓军, 马钊. 基于锂电池的电信机房后备电源解决方案[J]. 电脑与电信, 2012(9): 29-31. |
HUANG T, TAN X J, MA Z. Solution of telecommunication backup power system based on lithium-ion battery[J]. Computer & Telecommunication, 2012(9): 29-31. | |
6 | 李延涛, 张辉, 李艳杰. 磷酸铁锂电池在通信基站的应用研究[J]. 电源技术, 2017, 41(2): 202-204. |
LI Y T, ZHANG H, LI Y J. Application of lithium batteries in communication base station[J]. Chinese Journal of Power Sources, 2017, 41(2): 202-204. | |
7 | 周朝霞. 一种锂电池并联型交直流一体化电源的研究[J]. 电工电气, 2022(6): 66-67. |
ZHOU Z X. Research on a parallel AC-DC integrated power supply for lithium batteries[J]. Electrical Engineering, 2022(6): 66-67. | |
8 | 欧韦聪. 锂电池制造工艺控制及潜在问题分析[J]. 化工管理, 2021(32): 173-175. |
OU W C. Lithium battery manufacturing process control and analysis of potential problems[J]. Chemical Management, 2021(32): 173-175. | |
9 | MALEKI H, HOWARD J. Effects of overdischarge on performance and thermal stability of a Li-ion cell[J]. Journal of Power Sources. 2006, 160(2): 1395-1402. |
10 | BELOV D, YANG M H. Failure mechanism of Li-ion battery at overcharge conditions[J]. Journal of Solid State Electrochemistry, 2008, 12(7/8): 885-894. |
11 | GUO R, LU L G, OUYANG M G, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248. |
12 | DUBARRY M, DEVIE A, LIAW B. Cell-balancing currents in parallel strings of a battery system[J]. Journal of Power Sources, 2016, 321: 36-46. |
13 | BRAND M, HOFMANNOF M, STEINHARDT M, et al. Current distribution within parallel-connected battery cells[J]. Journal of Power Sources, 2016, 334: 202-212. |
14 | PERISOARA L, GURAN I, COSTACHE D. A passive battery management system for fast balancing of four LiFePO4 cells[C]// 2018 24th IEEE International Symposium on Design and Technology in Electronic Packaging (SIITME), ROMANIA, IEEE, 2018: 390-393. |
15 | DURAISAMY T, KALIYA E D. Adaptive passive balancing in battery management system for e-mobility[J]. International Journal of Energy Research, 2021, 45(7): 10752-10764. |
16 | AIZPURU I, IRAOLA U, CANALES J M, et al. Passive balancing design for Li-ion battery packs based on single cell experimental tests for a CCCV charging mode[C]// 2013 International Conference on Clean Electrical Power (ICCEP). Alghero, Italy. IEEE, 2013: 93-98. |
17 | ZHANG Z L, GUI H D, GU D J, et al. A hierarchical active balancing architecture for lithium-ion batteries[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 2757-2768. |
18 | LEE K M, LEE S W, CHOI Y G, et al. Active balancing of Li-ion battery cells using transformer as energy carrier[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1251-1257. |
19 | CONWAY T. An isolated active balancing and monitoring system for lithium ion battery stacks utilizing a single transformer per cell[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3727-3734. |
20 | MESTRALLET F, KERACHEV L, CREBIER J C, et al. Multiphase interleaved converter for lithium battery active balancing[J]. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012: 369-376. |
21 | FROST D F, HOWEY D A. Completely decentralized active balancing battery management system[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 729-738. |
22 | BARONTI F, RONCELLA R, SALETTI R. Performance comparison of active balancing techniques for lithium-ion batteries[J]. Journal of Power Sources, 2014, 267: 603-609. |
23 | CHEN F, QIAO W, QU L Y. A modular and reconfigurable battery system[C]// 2017 IEEE Applied Power Electronics Conference and Exposition. Tampa, FL, USA. IEEE, 2017: 2131-2135. |
24 | KIM D, LEE J. Discharge scheduling for voltage balancing in reconfigurable battery systems[J]. Electronics Letters, 2017, 53(7): 496-498. |
25 | BARONTI F, FANTECHI G, RONCELLA R, et al. Design of a module switch for battery pack reconfiguration in high-power applications[C]// 2012 IEEE International Symposium on Industrial Electronics. Hangzhou, China. IEEE, 2012: 1330-1335. |
26 | 陈弯, 赵子龙, 陈永真. 串联电池组电压均衡控制[J]. 技术与市场, 2015, 22(12): 178. |
CHEN W, ZHAO Z L, CHEN Y Z. Voltage equalization control of series-connected battery packs [J]. Technology and Market, 2015, 22(12): 178. | |
27 | 马春艳, 王庆龙, 张迪, 等. 基于SOC的串联连接锂电池能量均衡控制研究[J/OL]. 电源学报, 2022 [2022-07-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220215.1535.010.html. |
MA Chunyan, WANG Qinglong, ZHANG Di, et al. Research on SOC-based energy balancing control of series-connected lithium batteries[J/OL]. Journal of Power Supply, 2022 [2022-07-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220215.1535.010.html. | |
28 | 刘胜永, 于跃, 罗文广, 等. 基于SOC的锂电池组能量均衡控制策略研究[J]. 电源技术, 2017, 41(12): 1712-1714, 1717. |
LIU S Y, YU Y, LUO W G, et al. Research on energy balancing control strategy of lithium battery pack based on SOC[J]. Chinese Journal of Power Sources, 2017, 41(12): 1712-1714, 1717. | |
29 | 倪贤钋, 秦菲菲, 卢陈雷, 等. 基于SOC估算的锂电池组复合型均衡拓扑设计[J]. 通信电源技术, 2020, 37(1): 63-68. |
NI X P, QIN F F, LU C L, et al. Balanced topology design of lithium battery complex based on SOC estimation[J]. Telecom Power Technology, 2020, 37(1): 63-68. | |
30 | 戴震宇, 刘志茹, 贾金环, 等. 基于容量和电压的混合最优控制均衡[J]. 电子技术应用, 2019, 45(3): 108-112. |
DAI Z Y, LIU Z R, JIA J H, et al. Mixed optimal control scheme based on capacity balance and voltage balance[J]. Application of Electronic Technique, 2019, 45(3): 108-112. | |
31 | MENG J H, RICCO M, LUO G Z, et al. An overview and comparison of online implementable SOC estimation methods for lithium-ion battery[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1583-1591. |
32 | MOO C S, NG K S, HSIEH Y C. Parallel operation of battery power modules[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 701-707. |
33 | CAO Y, ABU Q J A. Evaluation of bi-directional single-inductor multi-input battery system with state-of-charge balancing control[J]. IET Power Electronics, 2018, 11(13): 2140-2150. |
34 | UR REHMAN M M, EVZELMAN M, HATHAWAY K, et al. Modular approach for continuous cell-level balancing to improve performance of large battery packs[C]// 2014 IEEE Energy Conversion Congress and Exposition. Pittsburgh, PA, USA. IEEE, 2014: 4327-4334. |
35 | LOU T T, ZHANG W G, GUO H Y, et al. The internal resistance characteristics of lithium-ion battery based on HPPC method[J]. Advanced Materials Research. 2012, 455/456: 246-251. |
36 | HENTUNEN A, LEHMUSPELTO T, SUOMELA J. Time-domain parameter extraction method for thévenin-equivalent circuit battery models[J]. IEEE Transactions on Energy Conversion, 2014, 29(3): 558-566. |
[1] | 邓林旺, 冯天宇, 舒时伟, 张子峰, 郭彬. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2879-2890. |
[2] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[3] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
[4] | 陈晓宇, 耿萌萌, 王乾坤, 沈佳妮, 贺益君, 马紫峰. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002. |
[5] | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. |
[6] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[7] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
[8] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[9] | 卓萍, 朱艳丽, 齐创, 王聪杰, 高飞. 锂离子电池组过充燃烧爆炸特性[J]. 储能科学与技术, 2022, 11(8): 2471-2479. |
[10] | 张从佳, 施敏达, 徐晨, 黄震宇, 慈松. 基于动态可重构电池网络的储能系统本质安全机制及实例分析[J]. 储能科学与技术, 2022, 11(8): 2442-2451. |
[11] | 张越, 孔得朋, 平平. 液冷板抑制锂离子电池组热失控蔓延性能及优化设计[J]. 储能科学与技术, 2022, 11(8): 2432-2441. |
[12] | 徐成善, 鲁博瑞, 张梦启, 王淮斌, 金昌勇, 欧阳明高, 冯旭宁. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
[13] | 韦荣阳, 毛阗, 高晗, 彭建仁, 杨健. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. |
[14] | 唐亮, 尹小波, 吴候福, 刘鹏杰, 王青松. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. |
[15] | 霍丽萍, 栾伟玲, 庄子贤. 锂离子电池储能安全技术的发展态势[J]. 储能科学与技术, 2022, 11(8): 2671-2680. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 403
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||