储能科学与技术 ›› 2022, Vol. 11 ›› Issue (12): 3999-4009.doi: 10.19799/j.cnki.2095-4239.2022.0341
收稿日期:
2022-06-20
修回日期:
2022-06-27
出版日期:
2022-12-05
发布日期:
2022-12-29
通讯作者:
何晓霞
E-mail:2218403061@qq.com;hexiaoxia@wust.edu.cn
作者简介:
肖浩逸(1999—),男,硕士研究生,主要研究方向为工业大数据分析,E-mail:2218403061@qq.com;
基金资助:
Haoyi XIAO(), Xiaoxia HE(), Jiajia LIANG, Chunli LI
Received:
2022-06-20
Revised:
2022-06-27
Online:
2022-12-05
Published:
2022-12-29
Contact:
Xiaoxia HE
E-mail:2218403061@qq.com;hexiaoxia@wust.edu.cn
摘要:
锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动分量里的噪音对模型预测能力的影响,且又不完全抛弃波动分量里的特征信息,本工作提出使用随机森林(RF)算法得到每个波动分量的重要性排序和数值,以此作为每个分量对原始数据解释能力的权重。然后将权重值和不同波动分量构建的神经网络模型得到的预测结果进行加权重构,进而得到锂离子电池的RUL预测。文章对比了单一模型和组合模型预测精度,加入了RF的组合模型预测精度让五种神经网络的表现都有进一步的提升。最后,对表现较好的两种网络——LSTM和GRU引入了简单编码解码(SED)的机制,让其更好地学习到序列数据全局时间上的特征和远程的依赖关系。以NASA数据集作为研究对象进行该方法的性能测试。实验结果表明,CEEMDAN-RF-SED-LSTM模型对电池RUL预测表现效果好,预测结果相比单一模型具有更低的误差。
中图分类号:
肖浩逸, 何晓霞, 梁佳佳, 李春丽. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009.
Haoyi XIAO, Xiaoxia HE, Jiajia LIANG, Chunli LI. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009.
表2
B0005预测评价指标结果"
电池编号 | 神经网络模型 | 模型方法 | 运行时间/s | MAE | RMSE | MAPE | RE |
---|---|---|---|---|---|---|---|
B0005 | LSTM | LSTM | 18.77 | 0.058592 | 0.070959 | 0.043809 | 0.040650 |
CEEMDAN-LSTM | 70.65 | 0.043490 | 0.057525 | 0.026992 | 0.026260 | ||
CEEMDAN-RF-LSTM | 74.93 | 0.040182 | 0.053559 | 0.024962 | 0.024390 | ||
RNN | RNN | 38.07 | 0.280588 | 0.360674 | 0.180698 | 0.335772 | |
CEEMDAN-RNN | 87.56 | 0.245580 | 0.332067 | 0.169977 | 0.390244 | ||
CEEMDAN-RF-RNN | 91.95 | 0.071269 | 0.087691 | 0.047033 | 0.195122 | ||
GRU | GRU | 17.84 | 0.060329 | 0.072215 | 0.044820 | 0.073171 | |
CEEMDAN-GRU | 61.86 | 0.045586 | 0.060776 | 0.028049 | 0.028130 | ||
CEEMDAN-RF-GRU | 66.39 | 0.041444 | 0.055729 | 0.025512 | 0.024390 | ||
CNN | CNN | 13.09 | 0.068268 | 0.081806 | 0.039025 | 0.440650 | |
CEEMDAN-CNN | 47.96 | 0.062904 | 0.073718 | 0.040348 | 0.304553 | ||
CEEMDAN-RF-CNN | 52.11 | 0.062832 | 0.073593 | 0.040437 | 0.280813 | ||
MLP | MLP | 13.02 | 0.070968 | 0.081720 | 0.047639 | 0.325203 | |
CEEMDAN-MLP | 45.63 | 0.068850 | 0.080262 | 0.045182 | 0.329496 | ||
CEEMDAN-RF-MLP | 49.97 | 0.068734 | 0.080241 | 0.044737 | 0.305152 |
表3
B0006预测评价指标结果"
电池编号 | 神经网络模型 | 模型方法 | 运行时间/s | MAE | RMSE | MAPE | RE |
---|---|---|---|---|---|---|---|
B0006 | LSTM | LSTM | 20.72 | 0.054751 | 0.069080 | 0.037688 | 0.068037 |
CEEMDAN-LSTM | 64.83 | 0.044735 | 0.058687 | 0.028165 | 0.056075 | ||
CEEMDAN-RF-LSTM | 69.37 | 0.039161 | 0.049791 | 0.024893 | 0.054112 | ||
RNN | RNN | 38.66 | 0.207933 | 0.325623 | 0.177686 | 0.439252 | |
CEEMDAN-RNN | 87.25 | 0.249714 | 0.345865 | 0.180759 | 0.355140 | ||
CEEMDAN-RF-RNN | 91.36 | 0.086660 | 0.110239 | 0.061186 | 0.196262 | ||
GRU | GRU | 17.84 | 0.064288 | 0.082282 | 0.044646 | 0.046729 | |
CEEMDAN-GRU | 58.64 | 0.042328 | 0.052737 | 0.027216 | 0.065421 | ||
CEEMDAN-RF-GRU | 62.91 | 0.041394 | 0.051566 | 0.026716 | 0.065421 | ||
CNN | CNN | 13.19 | 0.083262 | 0.095125 | 0.054467 | 0.233645 | |
CEEMDAN-CNN | 47.86 | 0.046205 | 0.062880 | 0.030333 | 0.029597 | ||
CEEMDAN-RF-CNN | 51.37 | 0.041894 | 0.054645 | 0.027848 | 0.028037 | ||
MLP | MLP | 13.06 | 0.085937 | 0.096994 | 0.064232 | 0.088037 | |
CEEMDAN-MLP | 39.78 | 0.051744 | 0.066709 | 0.034459 | 0.084112 | ||
CEEMDAN-RF-MLP | 44.08 | 0.048342 | 0.063234 | 0.032276 | 0.037383 |
表4
四组电池预测评价指标结果"
电池编号 | 模型方法 | MAE | RMSE | MAPE | RE |
---|---|---|---|---|---|
B0005 | CEEMDAN-RF-SED-LSTM | 0.025569 | 0.031899 | 0.016515 | 0.018130 |
CEEMDAN-RF-SED-GRU | 0.037491 | 0.044218 | 0.024056 | 0.089431 | |
B0006 | CEEMDAN-RF-SED-LSTM | 0.032727 | 0.039157 | 0.021635 | 0.056075 |
CEEMDAN-RF-SED-GRU | 0.041408 | 0.049697 | 0.028029 | 0.093458 | |
B0007 | CEEMDAN-RF-SED-LSTM | 0.021852 | 0.026331 | 0.013319 | 0.059524 |
CEEMDAN-RF-SED-GRU | 0.028275 | 0.036218 | 0.017499 | 0.061905 | |
B0018 | CEEMDAN-RF-SED-LSTM | 0.025835 | 0.031901 | 0.016380 | 0.094737 |
CEEMDAN-RF-SED-GRU | 0.030818 | 0.040062 | 0.019301 | 0.081053 |
1 | WANG S L, JIN S Y, BAI D K, et al. A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries[J]. Energy Reports, 2021, 7: 5562-5574. |
2 | ZRAIBI B, MANSOURI M, LOUKILI S E. Comparing deep learning methods to predict the remaining useful life of lithium-ion batteries[J]. Materials Today: Proceedings, 2022, 62: 6298-6304. |
3 | 胡振恺, 雷博, 李勇琦, 等. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656. |
HU Z K, LEI B, LI Y Q, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. | |
4 | 李建林, 肖珩. 锂离子电池建模现状综述[J]. 储能科学与技术, 2022, 11(2): 697-703. |
LI J L, XIAO H. Review on modeling of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(2): 697-703. | |
5 | 李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384. |
LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. | |
6 | 姚芳, 张楠, 黄凯. 锂离子电池状态估算与寿命预测综述[J]. 电源学报, 2020, 18(3): 175-183. |
YAO F, ZHANG N, HUANG K. Review of state estimation and life prediction for lithiumion batteries[J]. Journal of Power Supply, 2020, 18(3): 175-183. | |
7 | 韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438. |
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. | |
8 | 赵显赫, 耿光超, 林达, 等. 基于数据驱动的锂离子电池健康状态评估综述[J]. 浙江电力, 2021, 40(7): 65-73. |
ZHAO X H, GENG G C, LIN D, et al. Review of data-driven state of health estimation for lithium-ion battery[J]. Zhejiang Electric Power, 2021, 40(7): 65-73. | |
9 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73-86, 95. |
LI C, WANG C H, WANG G, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55(8): 73-86, 95. | |
10 | 李建林, 王哲, 许德智, 等. 基于数据驱动法的锂离子电池寿命预测关键技术综述[J]. 电器与能效管理技术, 2021(9): 10-18. |
LI J L, WANG Z, XU D Z, et al. Overview of key technologies for lithium-ion battery life prediction based on data-driven methods[J]. Electrical & Energy Management Technology, 2021(9): 10-18. | |
11 | 张若可, 郭永芳, 余湘媛, 等.基于数据驱动的锂离子电池RUL预测综述[J/OL]. 电源学报, 2021[2022-03-02].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DYXB20210824003&uniplatform=NZKPT&v=wYAa586U8l2FcQbuNn tpFqahCvLt EGyCU5ZM5Yf0wRMkJw67wWLkq3r54EysBEvW. |
ZHANG R K, GUO Y F, YU X Y, et al. A review of data-driven Lithium-ion battery RUL predictions[J/OL]. Journal of Power Sources,2021[2022-03-02].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DYXB202108 24003&uniplatform=NZKPT&v=wYAa586U8l2FcQbuNntpFqahCvLt EGyCU5ZM5Yf0wRMkJw67wWLkq3r54EysBEvW. | |
12 | XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. |
13 | WANG J W, DENG Z W, YU T, et al. State of health estimation based on modified Gaussian process regression for lithium-ion batteries[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104512. |
14 | 周亚鹏, 郭彪, 王一纯. 基于PF-ARIMA的锂离子电池剩余寿命预测[J]. 电池工业, 2022, 26(1): 19-22. |
ZHOU Y P, GUO B, WANG Y C. A remaining useful life prediction method for lithium-ion battery based on PF-ARIMA[J]. Chinese Battery Industry, 2022, 26(1): 19-22. | |
15 | 史永胜, 李锦, 任嘉睿, 等. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2022, 11(10): 3354-3363. |
SHI Y S, LI J, REN J R, et al. Prediction of residual service life of lithium-ion battery using WOA-XGBoost[J]. Energy Storage Science and Technology, 2022, 11(10): 3354-3363. | |
16 | CHEN Z W, SHI N, JI Y F, et al. Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J]. Energy, 2021, 234: doi: 10.1016/j.energy.2021.121269. |
17 | 韦荣阳, 毛阗, 高晗, 等. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. |
WEI R Y, MAO T, GAO H, et al. Health state estimation of lithium ion battery based on TWP-SVR[J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. | |
18 | ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]//2017 IEEE International Conference on Prognostics and Health Management. Dallas, TX, USA. IEEE: 88-95. |
19 | 张少凤, 张清勇, 杨叶森, 等. 基于滑动窗口和LSTM神经网络的锂离子电池建模方法[J]. 储能科学与技术, 2022, 11(1): 228-239. |
ZHANG S F, ZHANG Q Y, YANG Y S, et al. Lithium-ion battery model based on sliding window and long short term memory neural network[J]. Energy Storage Science and Technology, 2022, 11(1): 228-239. | |
20 | SHI Z Y, CHEHADE A. A dual-LSTM framework combining change point detection and remaining useful life prediction[J]. Reliability Engineering & System Safety, 2021, 205: doi: 10.1016/j.ress.2020.107257. |
21 | XIAO B, LIU Y G, XIAO B. Accurate state-of-charge estimation approach for lithium-ion batteries by gated recurrent unit with ensemble optimizer[J]. IEEE Access, 2019, 7: 54192-54202. |
22 | WU Y, LI W, WANG Y R, et al. Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter[J]. IEEE Access, 7: 54843-54854. |
23 | 姚远, 陈志聪, 吴丽君, 等. 采用GRU-MC混合算法的锂离子电池RUL预测[J]. 福州大学学报(自然科学版), 2022, 50(2): 169-174. |
YAO Y, CHEN Z C, WU L J, et al. RUL prediction of lithium-ion battery using GRU-MC hybrid algorithm[J]. Journal of Fuzhou University (Natural Science Edition), 2022, 50(2): 169-174. | |
24 | 陈赐阳, 陈德旺. 基于CNN-LSTM的锂电池剩余寿命(RUL)间接预测研究[J]. 电源技术, 2021, 45(5): 589-594. |
CHEN C Y, CHEN D W. Research on indirect prediction of lithium battery RUL based on CNN-LSTM[J]. Chinese Journal of Power Sources, 2021, 45(5): 589-594. | |
25 | 王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245. |
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. | |
26 | 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219. |
LIANG H F, YUAN P, GAO Y J. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219. | |
27 | CHEN D Q, HONG W C, ZHOU X Z. Transformer network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Access, 10: 19621-19628. |
28 | 陈彦余, 夏向阳, 周文钊, 等. 基于EMD-ARMA的锂离子电池剩余寿命预测[J]. 电力学报, 2021, 36(1): 43-50, 59. |
CHEN Y Y, XIA X Y, ZHOU W Z, et al. Prediction of the lithium-ion battery remaining useful life based on EMD-ARMA[J]. Journal of Electric Power, 2021, 36(1): 43-50, 59. | |
29 | 李泱, 张营, 邹博雨, 等. 基于EMD-GPR的锂离子电池剩余寿命预测方法研究[J]. 农业装备与车辆工程, 2021, 59(11): 60-63. |
LI Y, ZHANG Y, ZOU B Y, et al. Research on residual life prediction method of lithium ion battery based on EMD-GPR[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(11): 60-63. | |
30 | CHEN J C, CHEN T L, LIU W J, et al. Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery[J]. Advanced Engineering Informatics, 2021, 50: doi: 10.1016/j.aei.2021.101405. |
31 | CHENG G, WANG X Z, HE Y R. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network[J]. Energy, 2021, 232: doi: 10.1016/j.energy.2021.121022. |
32 | 赵沁峰,蔡艳平,王新军.锂电池在不同放电区间下的剩余寿命预测[J/OL].中国测试,2022[2022-06-20]. http://kns.cnki.net/kcms/detail/51.1714.TB.20211201.1038.006.html. |
ZHAO Q F, CAI Y P, WANG X J. Prediction of the remaining life of lithium batteries in different discharge intervals[J/OL]. Tested in China,2022[2022-06-20].http://kns.cnki.net/kcms/detail/51.1714.TB.2021 1201.1038.006.html. | |
33 | 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. |
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. | |
34 | ZHANG Y, PENG Z, GUAN Y, et al. Prognostics of battery cycle life in the early-cycle stage based on hybrid model[J]. Energy, 2021, 221: doi: 10.1016/j.energy.2021.119901. |
35 | TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011: 4144-4147. |
36 | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[1] | 邓林旺, 冯天宇, 舒时伟, 张子峰, 郭彬. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2879-2890. |
[2] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[3] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
[4] | 陈晓宇, 耿萌萌, 王乾坤, 沈佳妮, 贺益君, 马紫峰. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002. |
[5] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[6] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
[7] | 张越, 孔得朋, 平平. 液冷板抑制锂离子电池组热失控蔓延性能及优化设计[J]. 储能科学与技术, 2022, 11(8): 2432-2441. |
[8] | 卓萍, 朱艳丽, 齐创, 王聪杰, 高飞. 锂离子电池组过充燃烧爆炸特性[J]. 储能科学与技术, 2022, 11(8): 2471-2479. |
[9] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[10] | 马勇, 李晓涵, 孙磊, 郭东亮, 杨景刚, 刘建军, 肖鹏, 钱广俊. 基于三维电化学热耦合析锂模型的锂离子电池参数设计[J]. 储能科学与技术, 2022, 11(8): 2600-2611. |
[11] | 唐亮, 尹小波, 吴候福, 刘鹏杰, 王青松. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. |
[12] | 霍丽萍, 栾伟玲, 庄子贤. 锂离子电池储能安全技术的发展态势[J]. 储能科学与技术, 2022, 11(8): 2671-2680. |
[13] | 徐成善, 鲁博瑞, 张梦启, 王淮斌, 金昌勇, 欧阳明高, 冯旭宁. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
[14] | 韦荣阳, 毛阗, 高晗, 彭建仁, 杨健. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. |
[15] | 喻航, 张英, 徐超航, 余思瀚. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||