1 |
STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5): 433-455.
|
2 |
MATSUZAKI Yoshio, YASUDA Isamu. Electrochemical oxidation of H2 and CO in a H2‐H2O‐CO‐CO2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte[J]. Journal of the Electrochemical Society, 2000, 147(5): 1630-1635.
|
3 |
SASAKI K, HORI Y, KIKUCHI R, et al. Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases[J]. Journal of the Electrochemical Society, 2002, 149(3): A227-A233.
|
4 |
LU C, WORRELL W L, GORTE R J, et al. SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte[J]. Journal of the Electrochemical Society, 2003, 150(3): A354-A358.
|
5 |
LIU Q, DONG X H, XIAO G L, et al. A novel electrode material for symmetrical SOFCs[J]. Advanced Materials, 2010, 22(48): 5478-5482.
|
6 |
PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265-267.
|
7 |
KOH J H, YOO Y S, PARK J W, et al. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel[J]. Solid State Ionics, 2002, 149(3/4): 157-166.
|
8 |
KHAN M S, LEE S B, SONG R H, et al. Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: A review[J]. Ceramics International, 2016, 42(1): 35-48.
|
9 |
MUKHOPADHYAY M, MUKHOPADHYAY J, BASU R N. Functional anode materials for solid oxide fuel cell: A review[J]. Transactions of the Indian Ceramic Society, 2013, 72(3): 145-168.
|
10 |
SARANTARIDIS D, ATKINSON A. Redox cycling of Ni-based solid oxide fuel cell anodes: A review[J]. Fuel Cells, 2007, 7(3): 246-258.
|
11 |
JIANG S P, CHAN S H. A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science, 2004, 39(14): 4405-4439.
|
12 |
RUIZ-MORALES J C, CANALES-VÁZQUEZ J, PEÑA-MARTÍNEZ J, et al. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3- δ as both anode and cathode material with improved microstructure in solid oxide fuel cells[J]. Electrochimica Acta, 2006, 52(1): 278-284.
|
13 |
RUIZ-MORALES J C, CANALES-VÁZQUEZ J, SAVANIU C, et al. Materials for symmetrical solid oxide fuel cells[J]. ECS Transactions, 2007, 7(1): 905-912.
|
14 |
SU C, WANG W, LIU M L, et al. Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes[J]. Advanced Energy Materials, 2015, 5(14): 1500188.
|
15 |
SHAIKH S P S, MUCHTAR A, SOMALU M R. A review on the selection of anode materials for solid-oxide fuel cells[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1-8.
|
16 |
BIAN L Z, DUAN C C, WANG L J, et al. Ce-doped La0.7Sr0.3Fe0.9Ni0.1O3- δ as symmetrical electrodes for high performance direct hydrocarbon solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2017, 5(29): 15253-15259.
|
17 |
BIAN Liuzhen, WANG Lijun, DUAN Chuancheng, et al. Co-free La0.6Sr0.4Fe0.9Nb0.1O3 -δ symmetric electrode for hydrogen and carbon monoxide solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(60): 32210-32218.
|
18 |
LIU Yan, BAI Yaohui, LIU Jiang. Carbon monoxide fueled cone-shaped tubular solid oxide fuel cell with (Ni0.75Fe0.25-5% MgO)/YSZ anode[J]. Journal of the Electrochemical Society, 2013, 160(1): F13-F17.
|
19 |
HOMEL M, GÜR T M, KOH J H, et al. Carbon monoxide-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2010, 195(19): 6367-6372.
|
20 |
SUMI H, LEE Y H, MUROYAMA H, et al. Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4451-4457.
|
21 |
JU Young Wan, LEE Sang Won, KANG Byeong Su, et al. Phase transition of doped LaFeO3 anode in reducing atmosphere and their power generation property in intermediate temperature solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29641-29647.
|
22 |
DU Z, ZHAO H, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6-δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660-8669.
|
23 |
ZHU T L, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr (Ti, Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2(3): 478-496.
|
24 |
CHIBA R, YOSHIMURA F, SAKURAI Y. Properties of La1- ySryNi1- xFexO3 as a cathode material for a low-temperature operating SOFC[J]. Solid State Ionics, 2002, 152/153: 575-582.
|
25 |
SUN C W, HUI R, ROLLER J. Cathode materials for solid oxide fuel cells: A review[J]. Journal of Solid State Electrochemistry, 2010, 14(7): 1125-1144.
|
26 |
O'HAYRE RYAN, CHA SUK-WON, PRINZ FRITZ B, et al. Fuel cell fundamentals[M]. New York: John Wiley & Sons Inc, 2016.
|
27 |
HOLTAPPELS P, DE HAART LG J, STIMMING U, et al. Reaction of CO/CO2 gas mixtures on Ni-YSZ cermet electrodes[J]. Journal of Applied Electrochemistry, 1999, 29(5): 561-568.
|
28 |
PATEL H C, TABISH A N, COMELLI F, et al. Oxidation of H2, CO and syngas mixtures on ceria and nickel pattern anodes[J]. Applied Energy, 2015, 154: 912-920.
|
29 |
ZHU T L, TROIANI H, MOGNI L V, et al. Exsolution and electrochemistry in perovskite solid oxide fuel cell anodes: Role of stoichiometry in Sr(Ti, Fe, Ni)O3[J]. Journal of Power Sources, 2019, 439: 227077.
|
30 |
SHIN T H, IDA S, ISHIHARA T. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells[J]. Journal of the American Chemical Society, 2011, 133(48): 19399-19407.
|