储能科学与技术 ›› 2022, Vol. 11 ›› Issue (7): 2258-2265.doi: 10.19799/j.cnki.2095-4239.2022.0095

• 储能系统与工程 • 上一篇    下一篇

对称蛇形流道锂离子电池冷却性能

孔为(), 金劲涛, 陆西坡, 孙洋   

  1. 江苏科技大学能源与动力学院,江苏 镇江 212003
  • 收稿日期:2022-02-22 修回日期:2022-03-27 出版日期:2022-07-05 发布日期:2022-06-29
  • 通讯作者: 孔为 E-mail:wkongsofc@126.com
  • 作者简介:孔为(1983—),男,博士,副教授,从事电池热管理研究,E-mail:wkongsofc@126.com
  • 基金资助:
    国家自然科学基金项目(21701083)

Study on cooling performance of lithium ion batteries with symmetrical serpentine channel

Wei KONG(), Jingtao JIN, Xipo LU, Yang SUN   

  1. Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Received:2022-02-22 Revised:2022-03-27 Online:2022-07-05 Published:2022-06-29
  • Contact: Wei KONG E-mail:wkongsofc@126.com

摘要:

为了解决传统蛇形流道冷却剂流动路径长、压差大、能耗高的问题,提出了对称蛇形流道设计,并采用有限元软件COMSOL Multiphysics建立其模型。与传统蛇形流道相比,对称蛇形流道的压降降低了42.8%,其原因是通过子流道的设计,降低了子流道中的流量,进而降低了冷却剂的沿程损失。同时,对称蛇形流道的温度均匀性也优于传统蛇形流道。此外,虽然冷却剂沿着流动方向温度越来越高,但是电池在冷却剂流动方向上温度分布却比较均匀,温差较小。由于电池厚度方向过小的热导率,导致电池最大温差出现在该方向。当电池厚度方向热导率增至10.925 W/(m·K)时,电池厚度方向温差远小于冷却剂流动方向温差。电池最大温差也从2.75 ℃降至1.24 ℃,下降了54.9%,因此增大电池厚度方向的热导率对电池温度均匀性的提高具有显著效果。本文进一步探讨了冷却剂流量和流道宽度的影响。结果表明:冷却剂流量的增大虽然能够有效降低电池最大温度和温差,但是急剧提升了系统能耗。此外,增大流道宽度对减小流道压降具有显著效果,但对电池温度的影响可忽略。本文提出的对称蛇形流道为锂离子电池热管理系统发展提供了新思路,具有重要的借鉴意义。

关键词: 锂离子电池热管理, 液冷, 结构设计, 蛇形流道

Abstract:

A symmetrical serpentine channel design is proposed in this paper to solve problems related to long flow path, large pressure difference, and high energy consumption of coolant in the traditional serpentine channel design. The COMSOL Multiphysics finite element software was used to establish the model for the proposed designed. The pressure drop of the proposed design is reduced by 42.8% compared to the traditional serpentine channel because the flow rate in the subchannel and linear loss along the cooling channel are reduced. In addition, the temperature uniformity of the symmetrical serpentine flow channel is superior to that of the traditional serpentine flow channel. Despite the fact that the coolant temperature increases along the flow direction, the temperature distribution of the battery in the coolant flow direction is relatively uniform, and the temperature difference is small. The maximum temperature difference of the battery occurs in the direction of the thickness of the battery because the thermal conductivity in this direction is too small. When the thermal conductivity in the direction of the battery thickness increases to 10.925 W/(m·K), the temperature difference in the battery thickness direction is much smaller than that in the coolant flow direction. With the proposed design, the maximum temperature difference of the battery is reduced from 2.75 ℃ to 1.24 ℃ (a 54.9% reduction). Thus, improving the thermal conductivity in the battery thickness direction has a significant effect on improving the battery's temperature uniformity. In addition, the influences of coolant flow rate and channel width are discussed. Results demonstrate that although the increased coolant flow rate can reduce the maximum temperature and temperature difference of the battery, the system's energy consumption increases sharply. Expanding the channel width reduces the channel pressure drop significantly, and the effect on battery temperature is insignificant.

Key words: lithium-ion battery thermal management, liquid-cooling, structure design, serpentine channel

中图分类号: