1 |
AKHOUNDZADEH M H, PANCHAL S, SAMADANI E, et al. Investigation and simulation of electric train utilizing hydrogen fuel cell and lithium-ion battery[J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101234.
|
2 |
TETE P R, GUPTA M M, JOSHI S S. Developments in battery thermal management systems for electric vehicles: A technical review[J]. Journal of Energy Storage, 2021, 35: 102255.
|
3 |
JIANG W, ZHAO J T, RAO Z H. Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management[J]. Applied Thermal Engineering, 2021, 189: 116729.
|
4 |
常修亮, 郑莉莉, 韦守李, 等. 锂离子电池热失控仿真研究进展[J]. 储能科学与技术, 2021, 10(6): 2191-2199.
|
|
CHANG X L, ZHENG L L, WEI S L, et al. Progress in thermal runaway simulation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199.
|
5 |
刘霏霏, 鲍荣清, 程贤福, 等. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6): 2269-2282.
|
|
LIU F F, BAO R Q, CHENG X F, et al. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions[J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282.
|
6 |
ZHANG X H, LI Z, LUO L G, et al. A review on thermal management of lithium-ion batteries for electric vehicles[J]. Energy, 2022, 238: 121652.
|
7 |
WANG N B, LI C B, LI W, et al. Effect analysis on performance enhancement of a novel air cooling battery thermal management system with spoilers[J]. Applied Thermal Engineering, 2021, 192: 116932.
|
8 |
DING Y Z, JI H C, WEI M X, et al. Effect of liquid cooling system structure on lithium-ion battery pack temperature fields[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122178.
|
9 |
郑海, 续彦芳, 刘汉涛, 等. 基于液体介质的锂离子动力电池热管理系统实验分析[J]. 储能科学与技术, 2020, 9(3): 885-891.
|
|
ZHENG H, XU Y F, LIU H T, et al. Experimental analysis of thermal management system of lithium ion power battery based on liquid medium[J]. Energy Storage Science and Technology, 2020, 9(3): 885-891.
|
10 |
CHOUDHARI V G, DHOBLE A S, PANCHAL S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120434.
|
11 |
AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198: 117503.
|
12 |
SHENG L, ZHANG H Y, ZHANG H, et al. Lightweight liquid cooling based thermal management to a prismatic hard-cased lithium-ion battery[J]. International Journal of Heat and Mass Transfer, 2021, 170: 120998.
|
13 |
CHUNG Y, KIM M S. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles[J]. Energy Conversion and Management, 2019, 196: 105-116.
|
14 |
HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395.
|
15 |
QIAN Z, LI Y M, RAO Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126: 622-631.
|
16 |
CHEN K, CHEN Y M, SONG M X, et al. Multi-parameter structure design of parallel mini-channel cold plate for battery thermal management[J]. International Journal of Energy Research, 2020, 44(6): 4321-4334.
|
17 |
KONG W, ZHU K J, LU X P, et al. Enhancement of lithium-ion battery thermal management with the divergent-shaped channel cold plate[J]. Journal of Energy Storage, 2021, 42: 103027.
|
18 |
元佳宇, 李昕光, 王文超, 等. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2021, doi:10.19799/j.cnki.2095-4239.2021.0639.
|
|
YUAN J Y, LI X G, WANG W C, et al. Simulation of serpentine cooling structure of battery pack considering mass flow[J]. Energy Storage Science and Technology, 2021, doi:10.19799/j.cnki.2095-4239.2021.0639.
|
19 |
王明悦, 林家源, 刘新华, 等. 基于蛇形通道的电池组液冷方案设计与优化[J]. 北京航空航天大学学报, 2022, 48(1): 166-173.
|
|
WANG M Y, LIN J Y, LIU X H, et al. Design and optimization of battery pack liquid cooling scheme based on serpentine channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 166-173.
|
20 |
DENG T, ZHANG G D, RAN Y. Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate[J]. International Journal of Heat and Mass Transfer, 2018, 125: 143-152.
|
21 |
SHENG L, SU L, ZHANG H, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 141: 658-668.
|
22 |
WANG N B, LI C B, LI W, et al. Heat dissipation optimization for a serpentine liquid cooling battery thermal management system: An application of surrogate assisted approach[J]. Journal of Energy Storage, 2021, 40: 102771.
|
23 |
AL-ZAREER M, DINCER I, ROSEN M A. A novel phase change based cooling system for prismatic lithium ion batteries[J]. International Journal of Refrigeration, 2018, 86: 203-217.
|
24 |
PATIL M S, SEO J H, PANCHAL S, et al. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119728.
|
25 |
陈诚. 新能源汽车方形动力锂电池散热及优化设计研究[D]. 上海: 上海应用技术大学, 2020.
|
|
CHEN C. Research on heat dissipation and optimization design of square power lithium battery for new energy vehicle[D]. Shanghai: Shanghai Institute of Technology, 2020.
|
26 |
QU J, KE Z Q, ZUO A H, et al. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application[J]. International Journal of Heat and Mass Transfer, 2019, 129: 773-782.
|