储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2798-2810.doi: 10.19799/j.cnki.2095-4239.2022.0338
张群斌1(), 董陶2, 李晶晶1, 刘艳侠1,2, 张海涛1,2()
收稿日期:
2022-06-20
修回日期:
2022-06-30
出版日期:
2022-09-05
发布日期:
2022-08-30
通讯作者:
张海涛
E-mail:qbzhang@ipezz.ac.cn;htzhang@ipe.ac.cn
作者简介:
张群斌(1992—),男,硕士,工程师,研究方向为电池回收,E-mail:qbzhang@ipezz.ac.cn;
基金资助:
Qunbin ZHANG1(), Tao DONG2, Jingjing LI1, Yanxia LIU1,2, Haitao ZHANG1,2()
Received:
2022-06-20
Revised:
2022-06-30
Online:
2022-09-05
Published:
2022-08-30
Contact:
Haitao ZHANG
E-mail:qbzhang@ipezz.ac.cn;htzhang@ipe.ac.cn
摘要:
随着技术进步和规模生产效应的呈现,锂离子电池成本快速下降,促使其在诸多领域获得广泛的应用。锂离子电池富含能源金属和战略元素,其使用寿命一般为6~8年,如不对退役后的锂电池进行妥善回收处理,将造成巨大资源浪费和严重环境污染。科研人员已对富含有价金属元素的正极材料的回收开展了相对较多的研究。作为电池四大关键材料之一,电解液富含碳酸酯溶剂和六氟磷酸锂(LiPF6),如能将其回收并转化为高值产品将具有重大环保意义及经济效益。本文归纳了已报道的电解液回收技术和工艺,以便有效推动该领域的健康发展,并对其面临的挑战及未来发展趋势进行分析和展望。
中图分类号:
张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810.
Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810.
1 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
2 | KIM T H, PARK J S, CHANG S K, et al. The Current move of lithium ion batteries towards the next phase[J]. Advanced Energy Materials, 2012, 2(7): 860-872. |
3 | HUANG B, PAN Z F, SU X Y, et al. Tin-based materials as versatile anodes for alkali (earth)-ion batteries[J]. Journal of Power Sources, 2018, 395: 41-59. |
4 | YI T F, WEI T T, LI Y, et al. Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries[J]. Energy Storage Materials, 2020, 26: 165-197. |
5 | FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
6 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
7 | CHIANG Y M. Building a better battery[J]. Science, 2010, 330(6010): 1485-1486. |
8 | ZHAO X Y, LEHTO V P. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries[J]. Nanotechnology, 2021, 32(4): 042002. |
9 | ZHANG Q B, LIAO J, LIAO M, et al. One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries[J]. Applied Surface Science, 2019, 473: 799-806. |
10 | WU Y A, NG A W, YU Z C, et al. A review of evolutionary policy incentives for sustainable development of electric vehicles in China: Strategic implications[J]. Energy Policy, 2021, 148: 111983. |
11 | ARSHAD F, LI L, AMIN K, et al. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13527-13554. |
12 | 赵永锋, 张海涛. 高纯六氟磷酸锂晶体产业化制备工艺研究进展[J]. 过程工程学报, 2018, 18(6): 1160-1166. |
ZHAO Y F, ZHANG H T. Preparation process of high-quality LiPF6 crystals[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1160-1166. | |
13 | 张晓妍, 任宇飞, 高洁, 等. 动力电池电解液用添加剂的研究进展[J]. 储能科学与技术, 2018, 7(3): 404-417. |
ZHANG X Y, REN Y F, GAO J, et al. Progress of electrolyte additives for high-capacity power lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(3): 404-417. | |
14 | TIKEKAR M D, CHOUDHURY S, TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: 16114. |
15 | KWABI D G, JI Y L, AZIZ M J. Electrolyte lifetime in aqueous organic redox flow batteries: A critical review[J]. Chemical Reviews, 2020, 120(14): 6467-6489. |
16 | PENDER J P, JHA G, YOUN D H, et al. Electrode degradation in lithium-ion batteries[J]. ACS Nano, 2020, 14(2): 1243-1295. |
17 | WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. |
18 | WANG C, XING L D, VATAMANU J, et al. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries[J]. Nature Communications, 2019, 10: 3423. |
19 | AURBACH D, ZABAN A, EIN-ELI Y, et al. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems[J]. Journal of Power Sources, 1997, 68(1): 91-98. |
20 | WANG C, XING L D, VATAMANU J, et al. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries[J]. Nature Communications, 2019, 10: 3423. |
21 | LIAO Z H, ZHANG S, ZHAO Y K, et al. Experimental evaluation of thermolysis-driven gas emissions from LiPF6-carbonate electrolyte used in lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 124-135. |
22 | HUANG B, PAN Z F, SU X Y, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. |
23 | LIU P. Recycling waste batteries: Recovery of valuable resources or reutilization as functional materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: doi: acssuschemeng.8b03495. |
24 | SVEN L. The values & benefits of Umicore's process excellence model[J]. Precious Metals, 2012, 33(A01): 6. |
25 | MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. |
26 | MU D Y, LIU Y L, LI R H, et al. Transcritical CO2 extraction of electrolytes for lithium-ion batteries: Optimization of the recycling process and quality-quantity variation[J]. New Journal of Chemistry, 2017, 41(15): 7177-7185. |
27 | 順谷都市. 非水性溶剂体系电池的处理方法: JP11167936A[P]. 1998-03-11. |
SHUN GU D S. Treatment method of non-aqueous solvent system battery: JP11167936A[P]. 1998-03-11. | |
28 | 赵煜娟, 孙玉成, 纪常伟, 等. 一种废旧锂离子电池电解液回收处理方法: CN103825065B[P]. 2016-11-16. |
ZHAO Y J, SUN Y C, JI C W, et al. Method for recovering and processing waste and old lithium ion battery electrolyte: CN103825065B[P]. 2016-11-16. | |
29 | 严红. 废旧锂离子电池电解液的回收方法: CN104282962B[P]. 2017-03-08. |
YAN H. Method for recovering electrolytes from waste/used lithium ion batteries: CN104282962B[P]. 2017-03-08. | |
30 | HE K, ZHANG Z Y, ALAI L G, et al. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2019, 375: 43-51. |
31 | 杨中德, 金会鹏, 于永成. 电解液回收装置: CN208990308U[P]. 2019-06-18. |
YANG Z D, JIN H P, YU Y C. Electrolyte recovery device: CN208990308U[P]. 2019-06-18. | |
32 | 赖延清, 张治安, 闫宵林. 一种废旧锂电池电解液处理方法: 201710115795[P]. 2017-02-28. |
LAI Y Q, ZHANG Z A, YAN X L. An electrolyte treatment method for waste lithium battery: 201710115795[P]. 2017-02-28. | |
33 | ZHU Y B, DING Q, ZHAO Y M, et al. Study on the process of harmless treatment of residual electrolyte in battery disassembly[J]. Waste Management & Research, 2020, 38(11): 1295-1300. |
34 | GRÜTZKE M, KRAFT V, WEBER W, et al. Supercritical carbon dioxide extraction of lithium-ion battery electrolytes[J]. The Journal of Supercritical Fluids, 2014, 94: 216-222. |
35 | LAIN M J. Recycling of lithium ion cells and batteries[J]. Journal of Power Sources, 2001, 97/98: 736-738. |
36 | 林浩志, 平田浩一郎, 鹤卷英范, 等. 含氟电解液的处理方法: CN105594056A[P]. 2014-09-24. |
37 | 张锁江, 张鹏飞, 徐松, 等. 一种废旧锂离子电池电解液全回收方法: CN110203949B[P]. 2021-10-26. |
38 | 陈夏雨. 一种锂离子电池电解液回收方法: CN105390765A[P]. 2016-03-09. |
CHEN X Y. Recovery method for electrolyte solution of lithium ion battery: CN105390765A[P]. 2016-03-09. | |
39 | 赵煜娟, 孙玉成, 纪常伟, 等. 一种废旧硬壳动力锂离子电池电解液置换装置及置换方法: CN103825063B[P]. 2017-01-04. |
ZHAO Y, SUN Y, JI C, et al. Waste and old hard-case power lithium ion battery electrolyte displacement apparatus and displacement method thereof: CN103825063B[P]. 2017-01-04. | |
40 | SHARIF K M, RAHMAN M M, AZMIR J, et al. Experimental design of supercritical fluid extraction-A review[J]. Journal of Food Engineering, 2014, 124: 105-116. |
41 | STEVEN E SLOOP. System and method for removing an electrolyte from an energy storage and/or conversion device using a supercritical fluid: EP1472756 A1[P]. 2008-11-06. |
42 | MÖNNIGHOFF X, FRIESEN A, KONERSMANN B, et al. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization[J]. Journal of Power Sources, 2017, 352: 56-63. |
43 | ROTHERMEL S, EVERTZ M, KASNATSCHEEW J, et al. Graphite recycling from spent lithium-ion batteries[J]. ChemSusChem, 2016, 9(24): 3473-3484. |
44 | 周立山, 刘红光, 叶学海, 等. 一种回收废旧锂离子电池电解液的方法: CN102496752A[P]. 2012-06-13. |
ZHOU L S, LIU H G, YE X H, et al. Method for recycling electrolyte of waste lithium ion battery: CN102496752A[P]. 2012-06-13. | |
45 | 王学真. 一种从废旧锂电池正极材料中回收六氟磷酸锂的方法: CN108288737B[P]. 2020-01-03. |
46 | 曾桂生, 凌波, 魏栖梧, 等. 一种废旧锂电池中回收六氟磷酸锂的方法: CN109292746A[P]. 2019-02-01. |
ZENG G S, LING B, WEI Q W, et al. Method for recovering lithium hexafluorophosphate in waste lithium battery: CN109292746A[P]. 2019-02-01. | |
47 | 温丰源, 刘海霞, 李霞. 废旧锂离子电池材料中电解液的回收处理方法[J]. 河南化工, 2016, 33(8): 12-14, 29. |
WEN F Y, LIU H X, LI X. Recovery treatment method of electrolyte in waste lithium ion battery materials[J]. Henan Chemical Industry, 2016, 33(8): 12-14, 29. | |
48 | 刘权坤, 陈艳丽, 滑晨, 等. 一种废旧锂离子电池电解液回收再利用的方法: CN110620276B[P]. 2022-06-17. |
49 | 胡家佳, 王晨旭, 曹利娜. 一种废旧锂离子电池中六氟磷酸锂回收方法: CN106025420A[P]. 2016-10-12. |
HU J J, WANG C X, CAO L N. Method for recovering lithium hexafluorophosphate in waste lithium ion battery: CN106025420A[P]. 2016-10-12. | |
50 | LAIN M J. Recycling of lithium ion cells and batteries[J]. Journal of Power Sources, 2001, 97/98: 736-738. |
51 | 李荐, 何帅, 周宏明. 一种废旧锂离子电池电解液回收方法: CN104600392A[P]. 2015-05-06. |
LI J, HE S, ZHOU H M. Method for recovering electrolyte of waste lithium ion battery: CN104600392A[P]. 2015-05-06. | |
52 | 钟琍菁, 林冠佑, 王儀婷, 等. 锂的回收方法: CN113086994A[P]. 2021-07-09. |
ZHONG L J, LIN G Y, WANG Y T, et al. Method for recovering lithium: CN113086994A[P]. 2021-07-09. | |
53 | 王金锋, 张万红. Method for recycling lithium from lithium-containing battery: CN106654437B[P]. 2020-02-18. |
王金锋, 张万红. 从含锂电池中回收锂的方法: CN106654437B[P]. 2020-02-18. | |
54 | 蒋达金. 一种废旧六氟磷酸锂的资源化利用方法: CN111498878A[P]. 2020-08-07. |
JIANG D J. Resource utilization method of waste lithium hexafluorophosphate: CN111498878A[P]. 2020-08-07. | |
55 | 霍爱群, 王一飞, 毛国柱. 一种回收处理废旧锂电池电解液及电解液废水的处理方法: 104628217B[P]. 2016-09-07. |
HUO A Q, WANG Y F, MAO G Z. A treatment method for recycling waste lithium battery electrolyte and electrolyte wastewater:104628217B[P]. 2016-09-07. | |
56 | BEN T, JONATHAN P. Recovery of compounds from Li-ion battery electrolyte: EP2410603A1[P]. 2012-01-25. |
57 | WANG W, CHEN W J, LIU H T. Hydrometallurgical preparation of lithium carbonate from lithium-rich electrolyte[J]. Hydrometallurgy, 2019, 185: 88-92. |
58 | MCLAUGHLIN W, ADAMS T S. Li reclamation process: US5888463[P]. 1999-03-30. |
59 | 崔宏祥, 王志远, 徐宁. 一种废旧锂离子电池电解液的无害化处理工艺及装置: CN101397175[P]. 2009-04-01. |
CUI H X, WANG Z Y, XU N. A harmless treatment process and device for waste lithium ion battery electrolyte: CN101397175[P].2009-04-01. | |
60 | 张俊喜, 刘蔚, 王昆仑. A method for recycle that electrolyte of waste battery: CN109193062B[P]. 2021-04-02. |
张俊喜, 刘蔚, 王昆仑. 一种废旧电池电解液回收利用方法: CN109193062B[P]. 2021-04-02. | |
61 | 徐斌, 齐爱, 张建飞, 等. 一种废次锂离子电池电解液的处理再利用方法: CN109216824A[P]. 2019-01-15. |
XU B, QI A, ZHANG J F, et al. A method for treating and reusing waste sublithium ion battery electrolyte: CN109216824A[P]. 2019-01-15. | |
62 | 邵俊华, 张建飞, 闫国锋, 等. 一种锂电池电解液回收处理的方法: CN110867624A[P]. 2020-03-06. |
SHAO J H, ZHANG J F, YAN G F, et al. Lithium battery electrolyte recycling method: CN110867624A[P]. 2020-03-06. | |
63 | 张勇耀, 项文勤, 赵卫娟, 等. 废旧锂离子电池电解液回收研究[J]. 浙江化工, 2018, 49(8): 12-15, 19. |
ZHANG Y Y, XIANG W Q, ZHAO W J, et al. Research situation of waste lithium-ion battery electrolyte recycling[J]. Zhejiang Chemical Industry, 2018, 49(8): 12-15, 19. | |
64 | LI S, ZHANG S Q, SHEN L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Advanced Science, 2020, 7(5): 1903088. |
[1] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[2] | 房茂霖, 张英, 乔琳, 刘淑敏, 曹中琦, 张华民, 马相坤. 铁铬液流电池技术的研究进展[J]. 储能科学与技术, 2022, 11(5): 1358-1367. |
[3] | 方亮, 张凯, 周丽敏. 铝离子电池电解液的研究进展[J]. 储能科学与技术, 2022, 11(4): 1236-1245. |
[4] | 王心怡, 李维杰, 韩朝, 刘化鹍, 窦世学. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. |
[5] | 陶影, 赵铃飞, 王云晓, 曹余良, 侴术雷. 基于双盐高浓度电解液的高稳定性钠金属负极[J]. 储能科学与技术, 2022, 11(4): 1103-1109. |
[6] | 岳博文, 佟佳欢, 刘玉文, 霍锋. 离子液体电解液的模拟计算方法及应用[J]. 储能科学与技术, 2022, 11(3): 897-911. |
[7] | 胡华坤, 李新丽, 薛文东, 蒋朋, 李勇. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J]. 储能科学与技术, 2022, 11(1): 379-396. |
[8] | 王子璇, 李俊成, 李金东, 易娟, 石霖, 吴旭. 废磷酸铁锂正极材料资源化回收工艺[J]. 储能科学与技术, 2022, 11(1): 45-52. |
[9] | 姚祯, 王锐, 阳雪, 张琦, 刘庆华, 王保国, 缪平. 锌铁液流电池研究现状及展望[J]. 储能科学与技术, 2022, 11(1): 78-88. |
[10] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
[11] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[12] | 周琳, 杨佯, 胡勇胜. 合金电极失效机制:体积膨胀?电解液分解?[J]. 储能科学与技术, 2021, 10(3): 813-820. |
[13] | 张晶晶, 崔孝玲, 赵冬妮, 杨莉, 王洁. 高浓度电解液对电极/电解液界面的影响[J]. 储能科学与技术, 2021, 10(1): 143-149. |
[14] | 李林林, 王昱杰, 门一飞, 杨伟, 邹汉波, 陈胜洲. 湿法冶金回收技术中无机酸作为浸出剂的研究进展[J]. 储能科学与技术, 2021, 10(1): 68-76. |
[15] | 朱佳静, 高筠. Water-in-salt电解液研究进展[J]. 储能科学与技术, 2020, 9(S1): 13-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||