储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3789-3798.doi: 10.19799/j.cnki.2095-4239.2023.0446

• 复合储热专辑 • 上一篇    下一篇

基于低谷电的太阳能-地源热泵相变蓄热供暖系统研究

张亚磊(), 崔海亭(), 王晨, 陈浩松, 王超   

  1. 河北科技大学机械工程学院,河北 石家庄 050018
  • 收稿日期:2023-06-26 修回日期:2023-07-06 出版日期:2023-12-05 发布日期:2023-12-09
  • 通讯作者: 崔海亭 E-mail:1308924844@qq.com;cuiht@126.com
  • 作者简介:张亚磊(2000—),男,硕士研究生,研究方向为相变储能与新能源利用研究,E-mail:1308924844@qq.com
  • 基金资助:
    河北省重点研发项目(22324501D);河北省自然科学基金(B2021208017)

Research on a phase-change storage heating system of a solar-ground source heat pump based on low current

Yalei ZHANG(), Haiting CUI(), Chen WANG, Haosong CHEN, Chao WANG   

  1. School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
  • Received:2023-06-26 Revised:2023-07-06 Online:2023-12-05 Published:2023-12-09
  • Contact: Haiting CUI E-mail:1308924844@qq.com;cuiht@126.com

摘要:

为缓解北方冬季温室供暖能耗普遍偏高的问题,本工作以河北省某温室大棚为研究对象,以温室大棚现有的太阳能耦合地源热泵供暖系统为基础,利用TRNSYS软件搭建了基于低谷电驱动的太阳能-地源热泵相变蓄热供暖系统模型。对低谷电驱动下的系统运行进行研究,分析相变储热罐不同蓄热温度对系统供暖性能的影响,对地源热泵在农业温室供暖时存在的土壤热失衡问题进行研究,以及对太阳能-地源热泵相变蓄热供暖系统进行经济性分析。研究结果表明:在满足供暖需求时,相变储热罐的最佳蓄热温度为44.4 ℃,此时在整个供暖季低谷电利用率达到98%以上;在系统运行10年的情况下,太阳能耦合地源热泵供暖系统地埋管向土壤蓄热量比地埋管向土壤取热量少47232 kWh,太阳能-地源热泵相变蓄热供暖系统地埋管累计向土壤蓄热量比地埋管累计向土壤取热量多4487 kWh,太阳能-地源热泵相变蓄热供暖系统可以更好地保持土壤温度的平衡;太阳能耦合地源热泵供暖系统运行15年花费76095元,而太阳能-地源热泵相变蓄热供暖系统运行15年花费35516元,运行成本相比太阳能耦合地源热泵供暖系统减少了53%;太阳能-地源热泵相变蓄热供暖系统和太阳能耦合地源热泵供暖系统综合费用年值分别为10890元和11920元,综合费用年值相比太阳能耦合地源热泵供暖系统减少了8%,太阳能-地源热泵相变蓄热供暖系统具有更好的经济效益。

关键词: 相变储热, 太阳能, 跨季节蓄热, TRNSYS

Abstract:

To alleviate the typical high-energy consumption associated with greenhouse heating in winter in northern China, in this study, a greenhouse in Hebei Province is considered as the research object. Based on the existing solar-coupled ground source heat pump heating system in the greenhouse, TRNSYS software is employed to simulate a model of a solar-ground source heat pump phase-change storage heating system driven by low current. In addition, the operation of the system driven by low power is investigated, and the effect of different heat-storage temperatures of the phase-change heat-storage tank on the heating performance of the system is analyzed. Furthermore, the soil heat imbalance problem of the ground source heat pump in the heating of an agricultural greenhouse is investigated, and the economy of the solar-ground source heat pump phase-change heat-storage-heating system is analyzed. The results reveal that the optimum heat-storage temperature of the phase-change heat-storage tank is 44.4 ℃, and the utilization rate of off-peak electricity reaches greater than 98% during the entire heating season. Under the condition that the system has been running for 10 years, the buriedpipe of the solar-coupled ground source heat pump heating system stores 47232 kWh less heat than that stored by the buried pipe to the soil, and the solar-coupled ground source heat pump phase-change heat storage-heating system stores 4487 kWh more heat than that stored by the buried pipe to the soil. The solar-ground source heat pump phase-change storage heating system can better maintain the soil-temperature balance. The solar-coupled ground source heat pump heating system costs 76095 CNY for 15 years of operation, while the solar-ground source heat pump phase-change thermal storage heating system costs 35516 CNY for 15 years of operation; the operating cost is reduced by 53% compared to with that of the solar-coupled ground source heat pump heating system. The comprehensive annual cost of the solar-ground source heat pump phase-change storage heating system and the solar-coupled ground source heat pump heating system are 10890 CNY and 11920 CNY, respectively. The comprehensive annual cost is reduced by 8% in comparison with that of the solar-coupled ground source heat pump heating system, and the solar-ground source heat pump phase-change storage heating system provides better economic benefits.

Key words: phase change heat storage, solar energy, cross-season heat storage, TRNSYS

中图分类号: