储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 923-933.doi: 10.19799/j.cnki.2095-4239.2022.0690

• 储能测试与评价 • 上一篇    下一篇

储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性

程志翔1(), 曹伟2, 户波2, 程云芳2, 李鑫3, 姜丽华1, 金凯强1, 王青松1()   

  1. 1.中国科学技术大学火灾科学国家重点实验室,安徽 合肥 230026
    2.阳光电源股份有限公司,安徽 合肥 230088
    3.杰斯康软件(上海)有限公司,上海 200090
  • 收稿日期:2022-11-22 修回日期:2022-12-11 出版日期:2023-03-05 发布日期:2022-12-19
  • 通讯作者: 王青松 E-mail:ustcflczx@mail.ustc.edu.cn;pinew@ustc.edu.cn
  • 作者简介:程志翔(1999—),男,本科,研究方向为锂电池热失控及燃爆风险性分析,E-mail:ustcflczx@mail.ustc.edu.cn
  • 基金资助:
    国家重点研发计划课题(2021YFB2402001);中国博士后科学基金特别资助项目(2022T150615);中科院青促会项目(Y201768)

Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station

Zhixiang CHENG1(), Wei CAO2, Bo HU2, Yunfang CHENG2, Xin LI3, Lihua JIANG1, Kaiqiang JIN1, Qingsong WANG1()   

  1. 1.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
    2.Sungrow Power Supply Co. , Ltd. , Hefei 230088, Anhui, China
    3.Gescon Software (Shanghai) Co. , Ltd. , Shanghai 200090, China
  • Received:2022-11-22 Revised:2022-12-11 Online:2023-03-05 Published:2022-12-19
  • Contact: Qingsong WANG E-mail:ustcflczx@mail.ustc.edu.cn;pinew@ustc.edu.cn

摘要:

随着电化学储能应用规模的持续扩大,使用锂离子电池的电化学储能电站火灾燃爆事故时有发生,引发社会的广泛关注。锂离子电池的安全性是影响储能电站安全的重要因素,分析储能用锂离子电池的热失控行为及燃爆特性是有效防控储能电站火灾事故的关键。本工作选用储能用280 Ah磷酸铁锂电池为研究对象,基于锂离子电池热失控及产气分析测试平台,采用加热方式触发电池热失控,分析其产热、质量损失以及产气特性。进一步采用傅里叶变换红外光谱仪以及氢气传感器测量热失控过程产气成分,通过卷积分析得到气体组分占比,其中氢气和二氧化碳分别占36.8%和44.2%。通过FLACS软件建立电池储能液冷舱1∶1模型,分析了不同条件下磷酸铁锂电池产气发生燃爆的动压及火焰危害范围。研究发现,在电池储能舱内发生的燃爆行为受到舱室内部泄压开启压力和周边障碍物的影响,而其中当舱门开启压力从10 kPa增长到100 kPa时,爆炸超压峰值增长为2.15倍。该研究可为储能电站锂离子电池火灾事故预警、集装箱结构和防爆设计提供参考。

关键词: 电化学储能, 磷酸铁锂电池, 热失控, 储能舱燃爆

Abstract:

With the vigorous development of the energy storage industry, the application of electrochemical energy storage continues to expand, and the most typical core is the lithium-ion battery. However, recently, fire and explosion accidents have occurred frequently in electrochemical energy storage power stations, which is a widespread concern in society. The safety of lithium-ion batteries affects the safety of energy storage power stations. Analyzing the thermal runaway behavior and explosion characteristics of lithium-ion batteries for energy storage is the key to effectively prevent and control fire accidents in energy storage power stations. The research object of this study is the commonly used 280 Ah lithium iron phosphate battery in the energy storage industry. Based on the lithium-ion battery thermal runaway and gas production analysis test platforms, the thermal runaway of the battery was triggered by heating, and its heat production, mass loss, and gas production were analyzed. Fourier-transform infrared spectroscopy (FTIR), and a hydrogen sensor were further used to measure the gas production component during the thermal runaway. The proportion of H2 and CO obtained by convolution analysis accounted for 36.8% and 44.2%, respectively. The 1∶1 model of the battery energy storage liquid-cooled tank was established by FLACS software, and the dynamic pressure and flame hazard of gas production from lithium iron phosphate batteries under different conditions were analyzed. The study found that the explosion behavior in the battery energy storage compartment was affected by the position of the pressure relief plate inside the compartment, the opening pressure, and the surrounding obstacles. When the opening pressure of the cabin door increases from 10 to 100 kPa, the peak explosion overpressure increases by 2.15 times. This research can provide a reference for the early warning of lithium-ion battery fire accidents, container structure, and explosion-proof design of energy storage power stations.

Key words: electrochemical energy storage, lithium iron phosphate battery, thermal runaway, explosion of energy storage cabin

中图分类号: