1 |
ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie (International Ed in English), 2019, 58(26): 8681-8686.
|
2 |
HAYASHI A, MASUZAWA N, YUBUCHI S, et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-13178-2.
|
3 |
LUO S T, WANG Z Y, LI X L, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-27311-7.
|
4 |
WU F, FITZHUGH W, YE L H, et al. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nature Communications, 2018, 9: 4037.
|
5 |
CHEN S J, XIE D J, LIU G Z, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74.
|
6 |
彭林峰, 余创, 魏超超, 等. 锂硫银锗矿固态电解质研究进展[J]. 物理化学学报, 2023, 39(7): 35-67.
|
7 |
WANG C H, LIANG J W, ZHAO Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design[J]. Energy & Environmental Science, 2021, 14(5): 2577-2619.
|
8 |
WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): doi: 10.1002/adma.202000751.
|
9 |
YUE J, YAN M, YIN Y X, et al. Progress of the interface design in all-solid-state Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): doi: 10.1002/adfm.201707533.
|
10 |
KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
|
11 |
ADAMS S, RAO R P. Structural requirements for fast lithium ion migration in Li10GeP2S12[J]. Journal of Materials Chemistry, 2012, 22(16): 7687-7691.
|
12 |
周墨林, 蒋欣, 易婷, 等. 硫化物固态电解质Li10GeP2S12与锂金属间界面稳定性的改善研究[J]. 高等学校化学学报, 2020, 41(8): 1810-1817.
|
|
ZHOU M L, JIANG X, YI T, et al. Improvement of interface stability between sulfide solid electrolyte Li10GeP2S12 and lithium metal[J]. Chemical Journal of Chinese Universities, 2020, 41(8): 1810-1817.
|
13 |
KUDU Ö U, FAMPRIKIS T, FLEUTOT B, et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S-P2S5 binary system[J]. Journal of Power Sources, 2018, 407: 31-43.
|
14 |
KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.30.
|
15 |
ZENG D W, YAO J M, ZHANG L, et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes[J]. Nature Communications, 2022, 13: 1909.
|
16 |
BAKTASH A, REID J C, ROMAN T, et al. Diffusion of lithium ions in Lithium-argyrodite solid-state electrolytes[J]. NPJ Computational Materials, 2020, 6: 162.
|
17 |
LIU G Z, SHI J M, ZHU M T, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 38: 249-254.
|
18 |
DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie (International Ed in English), 2008, 47(4): 755-758.
|
19 |
吕璐, 周雷, Muhammad Khurram Tufail, 等. 高离子电导率硫化物固态电解质的空气稳定性研究进展[J]. 中国科学: 化学, 2020, 50(9): 1031-1044.
|
|
LU L, ZHOU L, TUFAIL M, et al. Advances in air stability of sulfide solid electrolytes with high ion conductivity[J]. Scientia Sinica Chimica), 2020, 50(9: 1031-1044.
|
20 |
张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 159-186.
|
|
ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22): 159-186.
|
21 |
孙滢智, 黄佳琦, 张学强, 等. 基于硫化物固态电解质的固态锂硫电池研究进展[J]. 储能科学与技术, 2017, 6(3): 464-478.
|
|
SUN Y Z, HUANG J Q, ZHANG X Q, et al. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes[J]. Energy Storage Science and Technology, 2017, 6(3): 464-478.
|
22 |
RAYAVARAPU P R, SHARMA N, PETERSON V K, et al. Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 1807-1813.
|
23 |
秦志光, 顾正建. 硫化物固态电解质在全固态电池中的应用研究进展[J]. 电池工业, 2021, 25(6): 329-335.
|
|
QIN Z G, GU Z J. Research progresson the application of sulfide solid electrolyte in all-solid-state batteries[J]. Chinese Battery Industry, 2021, 25(6): 329-335.
|
24 |
吕娜, 孙振, 胡雅琪, 等. 硫化物固态电解质Li6PS5Cl的球磨-固相烧结制备与性能[J]. 材料工程, 2022, 50(2): 103-110.
|
|
LYU N, SUN Z, HU Y Q, et al. Preparation and properties of sulfide solid state electrolyte Li6PS5Cl by ball milling-solid phase sintering[J]. Journal of Materials Engineering, 2022, 50(2): 103-110.
|
25 |
AHMAD N, ZHOU L, FAHEEM M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21548-21558.
|
26 |
LI Y Y, LI J W, CHENG J, et al. Enhanced air and electrochemical stability of Li7P3S11-based solid electrolytes enabled by aliovalent substitution of SnO2[J]. Advanced Materials Interfaces, 2021, 8(14): doi: 10.1002/admi.202100368.
|
27 |
TUFAIL M K, ZHOU L, AHMAD N, et al. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 407: doi: 10.1016/j.cej.2020.127149.
|
28 |
XU R C, XIA X H, LI S H, et al. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13): 6310-6317.
|
29 |
ZHOU L, TUFAIL M K, AHMAD N, et al. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28270-28280.
|
30 |
CHEN T, ZHANG L, ZHANG Z X, et al. Argyrodite solid electrolyte with a stable interface and superior dendrite suppression capability realized by ZnO co-doping[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40808-40816.
|
31 |
XIA Y, LI J J, ZHANG J, et al. Yttrium stabilized argyrodite solid electrolyte with enhanced ionic conductivity and interfacial stability for all-solid-state batteries[J]. Journal of Power Sources, 2022, 543: doi: 10.1016/j.jpowsour.2022.231846.
|
32 |
WANG Z X, JIANG Y, WU J, et al. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface[J]. Nano Energy, 2021, 84: doi: 10.1016/j.nanoen.2021.105906.
|
33 |
BAI Y, ZHAO Y B, LI W D, et al. Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li-S battery[J]. Chemical Engineering Journal, 2020, 396: doi: 10.1016/j.cej.2020.125334.
|
34 |
LIU H, ZHU Q S, WANG C, et al. High air stability and excellent Li metal compatibility of argyrodite-based electrolyte enabling superior all-solid-state Li metal batteries[J]. Advanced Functional Materials, 2022, 32(32): doi: 10.1002/adfm.202203858.
|
35 |
林碧霞, 林小燕, 邢震宇. 稀土元素掺杂锂离子固态电解质的研究进展[J]. 中国稀土学报, 2021, 39(5): 682-697.
|
|
LIN B X, LIN X Y, XING Z Y. Research advances of lithium-ion solid electrolytes doped with rare-earth elements[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(5): 682-697.
|
36 |
张楠, 钟学奇, 丁飞, 等. 利用Ce2S3对70Li2S-30P2S5玻璃陶瓷态电解质掺杂改性的研究[J]. 高校化学工程学报, 2020, 34(1): 200-207.
|
|
ZHANG N, ZHONG X Q, DING F, et al. Modification of 70Li2S-30P2S5 glass-ceramic electrolytes by Ce2S3 doping[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(1): 200-207.
|
37 |
陈明峰, 袁徐俊, 佘圣贤, 等. 高镍三元正极材料LiNi0.8Co0.1Mn0.1O2的合成与改性[J]. 青岛科技大学学报(自然科学版), 2020, 41(5): 41-46.
|
|
CHEN M F, YUAN X J, SHE S X, et al. Synthesis and modification of high nickel ternary cathode material LiNi0.8Co0.1Mn0.1O2[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2020, 41(5): 41-46.
|
38 |
LIU X S, ZHENG B Z, ZHAO J, et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries[J]. Advanced Energy Materials, 2021, 11(8): doi: 10.1002/aenm.202003583.
|