储能科学与技术 ›› 2023, Vol. 12 ›› Issue (8): 2412-2423.doi: 10.19799/j.cnki.2095-4239.2023.0236

• 储能材料与器件 • 上一篇    下一篇

Sc/O掺杂硫化物固态电解质的制备及全固态电池性能

赵争光1(), 陈振营2, 翟光群1(), 张希3, 庄小东2,4()   

  1. 1.常州大学材料科学与工程学院,江苏 常州 213164
    2.上海交通大学化学化工学院,金属基 复合材料国家重点实验室,上海市电气绝缘与热老化重点实验室
    3.上海交通大学机械与动力 工程学院,汽车动力与智能控制国家工程研究中心,智能汽车研究所,上海 200240
    4.上海交通大学,张江高等研究院,变革性分子前沿科学中心,合成科学创新研究中心,上海 201203
  • 收稿日期:2023-04-18 修回日期:2023-05-05 出版日期:2023-08-05 发布日期:2023-08-23
  • 通讯作者: 翟光群,庄小东 E-mail:20070305023@smail.cczu.edu.cn;zhai_gq@cczu.edu.cn;zhuang@sjtu.edu.cn
  • 作者简介:赵争光(1994—),男,硕士研究生,研究方向为硫化物固态电解质基全固态电池研究,E-mail:20070305023@smail.cczu.edu.cn
  • 基金资助:
    国家自然科学基金(52173205)

Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries

Zhengguang ZHAO1(), Zhenying CHEN2, Guangqun ZHAI1(), Xi ZHANG3, Xiaodong ZHUANG2,4()   

  1. 1.School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
    2.The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University
    3.Intelligent Vehicle Research Institute, National Engineering Research Center of Automobile Power and Intelligent Control, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    4.Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
  • Received:2023-04-18 Revised:2023-05-05 Online:2023-08-05 Published:2023-08-23
  • Contact: Guangqun ZHAI, Xiaodong ZHUANG E-mail:20070305023@smail.cczu.edu.cn;zhai_gq@cczu.edu.cn;zhuang@sjtu.edu.cn

摘要:

近年来,硫化物固态电解质凭借其高安全性、高离子电导率、较宽电化学窗口等诸多优点受到了人们的广泛关注。掺杂改性被认为是一种提高硫化物固态电解质电化学性能的有效方法。鉴于稀土元素具有独特的电子结构与功能特性,掺杂稀土元素已成为提升固态电解质的离子导电性和降低晶界阻抗的有效策略之一。本工作使用稀土元素化合物氧化钪(Sc2O3)作为掺杂剂合成了一系列改性后的硫化物固态电解质。通过X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、扫描电子显微镜以及色散能谱(EDS)等表征手段证明了Sc2O3的成功掺杂。通过使用交流阻抗法测试了其电导率,结果表明当Sc2O3的掺杂量为x=0.04时,Li6.08P0.96Sc0.04S4.94O0.06Cl硫化物固态电解质显示出较高的离子电导率,可以达到3.17×10-3 S/cm。用Sc2O3掺杂量为x=0.04的硫化物固态电解质Li6.08P0.96Sc0.04S4.94O0.06Cl组装锂-锂对称电池显示出0.95 mA/cm2的高临界电流密度(CCD)和在0.1 mA/cm电流密度下超过300 h的稳定锂-锂对称电池循环过程。Li6.08P0.96Sc0.04S4.94O0.06Cl基全固态电池显示出了249.03 mAh/g和191.2 mAh/g的首圈充放电比容量以及76.78%的首圈充放电效率,循环950圈后仍能保持123 mAh/g的放电比容量。即使在空气中暴露90 min后,Li6.08P0.96Sc0.04S4.94O0.06Cl电解质仍能表现出较好的晶形结构和良好的全固态电池循环性能。本工作为提高Li6PS5Cl型硫化物固态电解质的电化学性能提供了新的思路。

关键词: 硫化物固态电解质, 离子电导率, 掺杂改性, 全固态电池

Abstract:

In recent years, sulfide solid-state electrolytes have attracted extensive attention from researchers due to their high safety, high ionic conductivity, wide electrochemical window, and several other advantages. Modification by doping is considered to be an effective approach to improve the electrochemical performance of sulfide solid-state electrolytes. Because of the unique electronic structure and functional properties of rare earth elements (REEs), doping these elements has emerged as one of the effective strategies to improve the ionic conductivity of solid electrolytes and reduce the grain boundary resistance. In this work, a series of modified sulfide solid electrolytes were synthesized using an REE compound, namely scandium oxide (Sc2O3), as a dopant. The doping of Sc2O3 was studied through X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. The electrical conductivity was determined by the AC impedance method. The results showed that when the Sc2O3 doping amount was x=0.04 (Li6.08P0.96Sc0.04S4.94O0.06Cl), the sulfide solid-state electrolyte showed a high ionic conductivity of up to 3.17 × 10-3 S/cm. A lithium-lithium symmetric battery was assembled using the as-prepared sulfide solid-state electrolyte. The battery showed a high critical current density of 0.95 mA/cm2 and a stable cycling process over 300 h at a current density of 0.1 mA/cm2. The Li6.08P0.96Sc0.04S4.94O0.06Cl-based all-solid-state battery showed the first-cycle charge-discharge specific capacity of 249.0 and 191.2 mAh/g and the first-cycle charge-discharge efficiency of 76.78%. After 950 cycles, it could maintain a specific discharge capacity of 123 mAh/g. Even after exposure to the air for 90 min, the electrolyte exhibited good crystallinity and cycling performance for all-solid-state batteries. This work proposed a new dopant for improving the electrochemical performance of Li6PS5Cl-type sulfide solid-state electrolytes.

Key words: sulfide solid electrolyte, ionic conductivity, doping modification, all-solid-state battery

中图分类号: