1 |
HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures[J]. Journal of Hazardous Materials, 2019, 371: 1-7.
|
2 |
CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: doi: 10.1016/j.jlp.2019.103992.
|
3 |
ZHONG X H, LIU W, HAN J W, et al. Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries[J]. Waste Management, 2019, 89: 83-93.
|
4 |
曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547.
|
|
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547.
|
5 |
牛志远, 金阳, 孙磊, 等. 预制舱式磷酸铁锂电池储能电站燃爆事故模拟及安全防护仿真研究[J]. 高电压技术, 2022, 48(5): 1924-1933.
|
|
NIU Z Y, JIN Y, SUN L, et al. Safety protection simulation research and fire explosion accident simulation of prefabricated compartment lithium iron phosphate energy storage power station[J]. High Voltage Engineering, 2022, 48(5): 1924-1933.
|
6 |
程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933.
|
|
CHENG Z X, CAO W, HU B, et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology, 2023, 12(3): 923-933.
|
7 |
崔潇丹, 丛晓民, 赵林双. 锂离子电池热失控气体及燃爆危险性研究进展[J]. 电池, 2021, 51(4): 407-411.
|
|
CUI X D, CONG X M, ZHAO L S. Research progress in thermal runaway gases and explosion hazards of Li-ion battery[J]. Battery Bimonthly, 2021, 51(4): 407-411.
|
8 |
郭超超, 张青松. 锂离子电池热解气体爆炸极限测定及其危险性分析[J]. 中国安全生产科学技术, 2016, 12(9): 46-49.
|
|
GUO C C, ZHANG Q S. Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J]. Journal of Safety Science and Technology, 2016, 12(9): 46-49.
|
9 |
郑昆, 侯卫国, 马军, 等. 基于环境试验设备的锂离子电池燃爆特性分析[J]. 环境技术, 2021, 39(3): 186-188, 197.
|
|
ZHENG K, HOU W G, MA J, et al. Analysis of burning explosion characteristics of lithium ion batteries based on environmental test equipment[J]. Environmental Technology, 2021, 39(3): 186-188, 197.
|
10 |
张国维, 贾伯岩. 液氮对高温锂离子电池防火抑爆效果试验研究[C]//2020中国消防协会科学技术年会论文集. 2020: 945-951.
|
11 |
SKJOLD T, HISKEN H, LAKSHMIPATHY S, et al. Blind-prediction: Estimating the consequences of vented hydrogen deflagrations for homogeneous mixtures in 20-foot ISO containers[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8997-9008.
|
12 |
KOCH S, FILL A, BIRKE K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources, 2018, 398: 106-112.
|
13 |
WANG K, SHI T T, HE Y R, et al. Case analysis and CFD numerical study on gas explosion and damage processing caused by aging urban subsurface pipeline failures[J]. Engineering Failure Analysis, 2019, 97: 201-219.
|
14 |
LI J D, HERNANDEZ F, HAO H, et al. Vented methane-air explosion overpressure calculation-a simplified approach based on CFD[J]. Process Safety and Environmental Protection, 2017, 109: 489-508.
|
15 |
HJERTAGER B H. Computer simulation of turbulent reactive gas dynamics[J]. Modeling, Identification and Control: A Norwegian Research Bulletin, 1984, 5(4): 211-236.
|