| 1 | 王亚楠, 韩雪冰, 卢兰光, 等. 电动汽车动力电池研究展望:智能电池、智能管理与智慧能源[J]. 汽车工程, 2022, 44(4): 617-637. | 
																													
																						|  | WANG Y N, HAN X B, LU L G, et al. Prospects of research on traction batteries for electric vehicles: Intelligent battery, wise management, and smart energy[J]. Automotive Engineering, 2022, 44(4): 617-637. | 
																													
																						| 2 | DU Y T, FUJITA K, SHIRONITA S, et al. Capacity fade characteristics of nickel-based lithium-ion secondary battery after calendar deterioration at 80 ℃[J]. Journal of Power Sources, 2021, 501: 230005. | 
																													
																						| 3 | 付安安, 张庆武, 高剑, 等. 锂离子电池负极材料Li4Ti5O12的研究进展[J]. 电源技术, 2013, 37(12): 2239-2242. | 
																													
																						|  | FU A A, ZHANG Q W, GAO J, et al. Review of anode material Li4Ti5O12 for lithium ion battery[J]. Chinese Journal of Power Sources, 2013, 37(12): 2239-2242. | 
																													
																						| 4 | SHU J. Study of the interface between Li4Ti5O12 electrodes and standard electrolyte solutions in 0.0—5.0V[J]. Electrochemical and Solid-State Letters. 2008, 11 (12): A238-A240. | 
																													
																						| 5 | LI P, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries[J]. Energy Storage Materials, 2021, 35: 550-576. | 
																													
																						| 6 | BAURE G, DEVIE A, DUBARRY M. Battery durability and reliability under electric utility grid operations: Path dependence of battery degradation[J]. Journal of the Electrochemical Society, 2019, 166(10): A1991-A2001. | 
																													
																						| 7 | CHAHBAZ A, MEISHNER F, LI W H, et al. Non-invasive identification of calendar and cyclic ageing mechanisms for lithium-titanate-oxide batteries[J]. Energy Storage Materials, 2021, 42: 794-805. | 
																													
																						| 8 | BANK T, FELDMANN J, KLAMOR S, et al. Extensive aging analysis of high-power lithium titanate oxide batteries: Impact of the passive electrode effect[J]. Journal of Power Sources, 2020, 473: 228566. | 
																													
																						| 9 | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. | 
																													
																						|  | WANG H H, WU Z Q, CHU D R. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition[J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. | 
																													
																						| 10 | PARK S C, KIM Y M, KANG Y M, et al. Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2[J]. Journal of Power Sources, 2001, 103(1): 86-92. | 
																													
																						| 11 | DUBARRY M, TRUCHOT C, CUGNET M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations[J]. Journal of Power Sources, 2011, 196(23): 10328-10335. | 
																													
																						| 12 | ERNST F O, KAMMLER H K, ROESSLER A, et al. Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8[J]. Materials Chemistry and Physics, 2007, 101(2/3): 372-378. | 
																													
																						| 13 | LIU S J, WINTER M, LEWERENZ M, et al. Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature[J]. Energy, 2019, 173: 1041-1053. |