储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 57-71.doi: 10.19799/j.cnki.2095-4239.2023.0213
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
李召阳1(), 刘定宏1, 赵岩岩1, 陈满2, 雷旗开2, 彭鹏2, 刘磊1()
收稿日期:
2023-04-10
修回日期:
2023-06-30
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
刘磊
E-mail:lizhaoyang@catarc.ac.cn;liulei2013@catarc.ac.cn
作者简介:
李召阳(1993—),男,硕士,工程师,研究方向为锂电池测评技术,E-mail:lizhaoyang@catarc.ac.cn;
基金资助:
Zhaoyang LI1(), Dinghong LIU1, Yanyan ZHAO1, Man CHEN2, Qikai LEI2, Peng PENG2, Lei LIU1()
Received:
2023-04-10
Revised:
2023-06-30
Online:
2024-01-05
Published:
2024-01-22
Contact:
Lei LIU
E-mail:lizhaoyang@catarc.ac.cn;liulei2013@catarc.ac.cn
摘要:
通过高重复性的针刺试验平台对两款高镍三元体系的高比能量(260~300 Wh/kg)软包锂离子动力电池进行试验,基于针刺内短路的电子流向模型,分析了不同针刺速度、针尖角度、夹具形式和针刺位置的影响和作用规律,并提出针刺安全性能的量化评估参数。试验结果表明:测试使用的夹具孔径越小、针刺速度越快,电池在针刺过程中的内短路放电就越严重,针刺后的温升和压降也越大,特别是使用20 mm以下孔径夹具对高比能软包电池进行高速针刺时有较大概率触发热失控并起火;然而由于软包电池的层间导热系数较低,此时电芯外部温升相对起火存在一定滞后性;在其他条件相同时,刺针针尖角度的变化并不会给内短路放电的能量损耗带来太大差异,反而是针刺位置的偏离会大大提高失效起火的风险,这再次印证了隔膜对刺针的包裹和阻隔作用是高比能量软包电池针刺起火与否的重要影响因素;区别于传统的测试现象描述和Hazard Level等级评价,针对内短路发热导致集流体熔融这一过程,可以根据其特征电压参数计算短路恶劣指数,能够为产品的针刺安全性能提供量化的评价指标。本研究有助于锂离子软包电池的针刺测评技术开发,并可以为高比能量电池在面临机械应力破坏或枝晶过度生长时的安全性提供试验参考。
中图分类号:
李召阳, 刘定宏, 赵岩岩, 陈满, 雷旗开, 彭鹏, 刘磊. 高比能量锂离子软包电池针刺测试的影响因素研究[J]. 储能科学与技术, 2024, 13(1): 57-71.
Zhaoyang LI, Dinghong LIU, Yanyan ZHAO, Man CHEN, Qikai LEI, Peng PENG, Lei LIU. Nail penetration characteristics of high-energy-density lithium-ion pouch cell[J]. Energy Storage Science and Technology, 2024, 13(1): 57-71.
表4
16组不同条件下针刺测试结果的量化对比"
组别 | 孔径/mm | 速度/(mm/s) | 针尖/(°) | 针刺位置 | 试验结果 | ΔV/mV | ΔT/℃ | Λ/mV2 |
---|---|---|---|---|---|---|---|---|
A1 | 100 | 80 | 30° | 孔中心 | HL3 | 113 | 9.4 | 2×2=4 |
B1 | HL3 | 69 | 3.5 | 18×15=270 | ||||
A2 | 20 | 80 | 30° | 孔中心 | HL5 | — | — | — |
B2 | HL3 | 116 | 6.4 | 23×20=460 | ||||
A3 | 20 | 0.1 | 30° | 孔中心 | HL3 | 30 | 2.2 | 9×4=36 |
B3 | HL3 | 80 | 3.1 | 12×2=24 | ||||
A4 | 20 | 0.1 | 30° | 孔边缘 | HL5 | — | — | 12×5=60 |
B4 | HL5 | — | — | — | ||||
A5 | 50 | 80 | 30° | 孔中心 | HL3 | 136 | 22 | 23×15=345 |
B5 | HL3 | 97 | 5.7 | 20×17=340 | ||||
A6 | 50 | 0.1 | 30° | 孔中心 | HL3 | 18 | 0.9 | 8×3=24 |
B6 | HL3 | 19 | 1.2 | 5×3=15 | ||||
A7 | 20 | 0.1 | 60° | 孔中心 | HL3 | 27 | 2 | 7×3=21 |
B7 | HL3 | 24 | 1 | 8×4=32 | ||||
A8 | 100 | 0.1 | 30° | 孔中心 | HL3 | 11 | 0.6 | 7×3=21 |
B8 | HL3 | 18 | 1.3 | 7×2=14 |
1 | 陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039. |
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039. | |
2 | DOOSE S, HASELRIEDER W, KWADE A. Effects of the nail geometry and humidity on the nail penetration of high-energy density lithium ion batteries[J]. Batteries, 2021, 7(1): 6. |
3 | HEUBERGER C F, MAC DOWELL N. Real-world challenges with a rapid transition to 100% renewable power systems[J]. Joule, 2018, 2(3): 367-370. |
4 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. |
5 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. |
6 | 王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418. |
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. | |
7 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
8 | 许辉勇, 范亚飞, 张志萍, 等. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020, 9(4): 1113-1126. |
XU H Y, FAN Y F, ZHANG Z P, et al. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126. | |
9 | 王芳, 林春景, 刘磊, 等. 动力电池安全性的测试与评价[J]. 储能科学与技术, 2018, 7(6): 967-971. |
WANG F, LIN C J, LIU L, et al. Test and evaluation on safety of power batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 967-971. | |
10 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求及试验方法: GB/T 31485—2015[S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Safety requirements and test methods for traction battery of electric vehicle: GB/T 31485—2015[S]. Beijing: Standards Press of China, 2015. | |
11 | The International Electrotechnical Commission. Safety requirements secondary lithium-ion cells for the propulsion of electric road vehicles-rules for bibliographic references and citations to information resources: IEC 62660-3, 2010[S]. Geneva: The International Electrotechnical Commission, 2010. |
12 | Underwriter Laboratories Inc. Safety requirements for vehicle power batteries: UL 2580-2020[S]. Chicago, IL, USA, 2020. |
13 | Sandia National Laboratories. Recommended practices for abuse testing rechargeable energy storage systems (RESSs)[S]. New Mexico, California, USA, 2017. |
14 | Society of Automotive Engineers. Electric and hybrid electric vehicle rechargeable energy storage system (ress) safety and abuse testing-rules for bibliographic references and citations to information resources: SAE J2464—2009[S]. America: Society of Automotive Engineers, 2009. |
15 | 金标, 周明涛, 刘方方, 等. 磷酸铁锂动力锂离子电池穿刺实验[J]. 电池, 2017, 47(1): 23-26. |
JIN B, ZHOU M T, LIU F F, et al. Nail penetration test for lithium iron phosphate power Li-ion battery[J]. Battery Bimonthly, 2017, 47(1): 23-26. | |
16 | 田君, 田崔钧, 王一拓, 等. 锂离子电池安全性测试与评价方法分析[J]. 储能科学与技术, 2018, 7(6): 1128-1134. |
TIAN J, TIAN C J, WANG Y T, et al. Safety test and evaluation method of lithium ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1128-1134. | |
17 | ICHIMURA M. The safety characteristics of lithium-ion batteries for mobile phones and the nail penetration test[C]//INTELEC 07-29th International Telecommunications Energy Conference. September 30-October 4, 2007, Rome, Italy. IEEE, 2008: 687-692. |
18 | 刘仕强, 王芳, 樊彬, 等. 针刺速度对动力锂离子电池安全性的影响[J]. 汽车安全与节能学报, 2013, 4(1): 82-86. |
LIU S Q, WANG F, FAN B, et al. Influence of penetration speeds on power Li-ion-cell's safety performance[J]. Journal of Automotive Safety and Energy, 2013, 4(1): 82-86. | |
19 | MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115. |
20 | YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. Journal of Power Sources, 2018, 393: 67-74. |
21 | 张海林, 和祥运, 李艳, 等. 锂离子电池的针刺测试[J]. 电池工业, 2014, 19(4): 194-196, 202. |
ZHANG H L, HE X Y, LI Y, et al. Acupuncture test of Li-ion batteries[J]. Chinese Battery Industry, 2014, 19(4): 194-196, 202. | |
22 | 李新静, 张佳瑢, 魏引利, 等. 锂离子电池针刺测试影响因素研究[J]. 电池工业, 2014, 19(S1): 320-323. |
LI X J, ZHANG J R, WEI Y L, et al. Study on the influence factors of acupuncture test for Li-ion battery[J]. Chinese Battery Industry, 2014, 19(S1): 320-323. | |
李新静, 张佳瑢, 魏引利, 等. 锂离子电池针刺测试影响因素研究[J]. 电池工业, 2014, 19(S1): 320-323. | |
LI X J, ZHANG J R, WEI Y L, et al. Study on the influence factors of acupuncture test for Li-ion battery[J]. Chinese Battery Industry, 2014, 19(S1): 320-323. | |
23 | 王磊. 锂离子电池针刺实验影响因素的研究[J]. 信息记录材料, 2019, 20(9): 4-7. |
WANG L. Study on the factors affecting the acupuncture experiment of lithium ion battery[J]. Information Recording Materials, 2019, 20(9): 4-7. | |
24 | 谭春华, 符泽卫, 朱冠华, 等. 锂离子电池针刺热失控仿真研究[J]. 电源技术, 2018, 42(11): 1604-1607. |
TAN C H, FU Z W, ZHU G H, et al. Simulation study on thermal runaway of Li-ion battery after nail penetration[J]. Chinese Journal of Power Sources, 2018, 42(11): 1604-1607. | |
25 | ABAZA A, FERRARI S, WONG H K, et al. Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells[J]. Journal of Energy Storage, 2018, 16: 211-217. |
26 | XU J J, MEI W X, ZHAO C P, et al. Study on thermal runaway mechanism of 1000 mAh lithium ion pouch cell during nail penetration[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(2): 273-284. |
27 | YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Operando analysis of thermal runaway in lithium ion battery during nail-penetration test using an X-ray inspection system[J]. Journal of the Electrochemical Society, 2019, 166(6): A1243-A1250. |
28 | ZHAO R, LIU J, GU J J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123: 392-401. |
29 | YAMANAKA T, TAKAGISHI Y, TOZUKA Y, et al. Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk[J]. Journal of Power Sources, 2019, 416: 132-140. |
30 | KIM J, MALLARAPU A, SANTHANAGOPALAN S. Transport processes in a Li-ion cell during an internal short-circuit[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab995d. |
31 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
32 | 王帅林, 盛雷, 齐丽娜, 等. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992. |
WANG S L, SHENG L, QI L N, et al. Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(10): 1986-1992. | |
33 | RAMADASS P, FANG W F, ZHANG Z M. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique[J]. Journal of Power Sources, 2014, 248: 769-776. |
34 | AIELLO L, GSTREIN G, ERKER S, et al. Optimized nail for penetration test on lithium-ion cells and its utilization for the validation of a multilayer electro-thermal model[J]. Batteries, 2022, 8(4): 32. |
35 | CHEN M J, YE Q, SHI C M, et al. New insights into nail penetration of Li-ion batteries: Effects of heterogeneous contact resistance[J]. Batteries & Supercaps, 2019, 2(10): 874-881. |
36 | NAM K W, BAK S M, HU E Y, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 1047-1063. |
37 | KYUNG-WAN N, SEONG-MIN B, ENYUAN H, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Function Material, 2013, 23: 1047-1063. |
38 | YANG X Q, SUN X, MCBREEN J. New findings on the phase transitions in Li1- xNiO2: in situ synchrotron X-ray diffraction studies[J]. Electrochemistry Communications, 1999, 1(6): 227-232. |
39 | LI W, REIMERS J N, DAHN J R. In situ X-ray diffraction and electrochemical studies of Li1- xNiO2[J]. Solid State Ionics, 1993, 67(1/2): 123-130. |
40 | YOON W S, CHUNG K Y, MCBREEN J, et al. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD[J]. Electrochemistry Communications, 2006, 8(8): 1257-1262. |
41 | TIAN C X, XU Y H, NORDLUND D, et al. Charge heterogeneity and surface chemistry in polycrystalline cathode materials[J]. Joule, 2018, 2(3): 464-477. |
[1] | 李晨威, 徐世国, 余海峰, 于松民, 江浩. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. |
[2] | 孙琦, 彭豪, 孟庆国, 孔德凯, 冯睿. 极限工况下储能电池包热适应性[J]. 储能科学与技术, 2024, 13(6): 2039-2043. |
[3] | 张玉超, 张凤姣, 娄伟, 昝飞翔, 王琳玲, 盛安旭, 吴晓辉, 陈静. 废旧锂离子电池有价金属资源化利用的转化过程和潜在环境影响[J]. 储能科学与技术, 2024, 13(6): 1861-1870. |
[4] | 汤旭旭, 许铤, 储德韧. 镍钴锰三元锂离子电池不同电压下浮充失效机理及热安全研究[J]. 储能科学与技术, 2024, 13(6): 2044-2053. |
[5] | 甄箫斐, 王贝贝, 张小虎, 孙一铭, 曹文炅, 董缇. 锂电池储能系统热失控气体生成及扩散规律研究[J]. 储能科学与技术, 2024, 13(6): 1986-1994. |
[6] | 刘宝泉, 曹小雨. 锂电池热失控早期典型气体精准检测方法[J]. 储能科学与技术, 2024, 13(6): 1995-2009. |
[7] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[8] | 钟国彬, 姚鑫, 刘永超, 侯倩, 项宏发. 锂离子电池高安全复合隔膜的挑战和未来展望[J]. 储能科学与技术, 2024, 13(6): 1794-1806. |
[9] | 唐梓巍, 师玉璞, 张雨禅, 周奕博, 杜慧玲. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. |
[10] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[11] | 廉高棨, 叶敏, 王桥, 李岩, 麻玉川, 孙乙丁, 杜鹏辉. 基于改进模型与优化自适应CKF的锂离子电池快速变温工况下的SOC估计[J]. 储能科学与技术, 2024, 13(5): 1667-1676. |
[12] | 吕兆财, 王玉西, 汪智涛, 孙晓辉, 李景康. 热辊压对锂离子电池正极极片性能的影响[J]. 储能科学与技术, 2024, 13(5): 1443-1450. |
[13] | 李润源, 郭傅傲, 赵钢超. 集装箱式锂离子电池储能系统消防安全早期预警方法[J]. 储能科学与技术, 2024, 13(5): 1595-1602. |
[14] | 何林, 刘江岩, 刘彬, 李夔宁, 代帅. 数据分布多样性对锂电池SOC预测的泛化影响[J]. 储能科学与技术, 2024, 13(5): 1677-1687. |
[15] | 韩亚露, 陈奕戈, 邸会芳, 林杰欢, 王振兵, 张扬, 苏方远, 陈成猛. 锂离子电池不同服役工况下失效研究进展[J]. 储能科学与技术, 2024, 13(4): 1338-1349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||