1 |
SONG L B, ZHENG Y H, XIAO Z L, et al. Review on thermal runaway of lithium-ion batteries for electric vehicles[J]. Journal of Electronic Materials, 2022, 51(1): 30-46. DOI: 10.1007/s11664-021-09281-0.
|
2 |
WANG Y, FENG X N, HUANG W S, et al. Challenges and opportunities to mitigate the catastrophic thermal runaway of high-energy batteries[J]. Advanced Energy Materials, 2023, 13(15): 2203841. DOI: 10.1002/aenm.202203841.
|
3 |
山彤欣, 王震坡, 洪吉超, 等. 新能源汽车动力电池 "机械滥用-热失控" 及其安全防控技术综述[J]. 机械工程学报, 2022, 58(14): 252-275. DOI: 10.3901/JME.2022.14.252.
|
|
SHAN T X, WANG Z P, HONG J C, et al. Overview of "mechanical abuse-thermal runaway" of electric vehicle power battery and its safety prevention and control technology[J]. Journal of Mechanical Engineering, 2022, 58(14): 252-275. DOI: 10.3901/JME.2022.14.252.
|
4 |
王淮斌, 李阳, 王钦正, 等. 电动汽车事故致灾机理及调查方法[J]. 储能科学与技术, 2021, 10(2): 544-557. DOI: 10.19799/j.cnki.2095-4239.2020.0325.
|
|
WANG H B, LI Y, WANG Q Z, et al. Mechanisms causing thermal runaway-related electric vehicle accidents and accident investigation strategies[J]. Energy Storage Science and Technology, 2021, 10(2): 544-557. DOI: 10.19799/j.cnki.2095-4239.2020.0325.
|
5 |
JIANG L L, CHENG X B, PENG H J, et al. Carbon materials for traffic power battery[J]. eTransportation, 2019, 2: 100033. DOI: 10.1016/j.etran.2019.100033.
|
6 |
HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. DOI: 10.1016/j.etran. 2019.100005.
|
7 |
LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153. DOI: 10.1016/j.ensm.2019.05.019.
|
8 |
YANG G, XIE X, MENG X, et al. Active electrode materials for lithium-ion battery. Ferroelectrics, 2023, 607(1), 96–105. https://doi.org/10.1080/00150193.2023.2198376
|
9 |
LOPATA J S, GARRICK T R, WANG F K, et al. Dynamic multi-dimensional numerical transport study of lithium-ion battery active material microstructures for automotive applications[J]. Journal of the Electrochemical Society, 2023. DOI: 10.1149/1945-7111/acbc9e.
|
10 |
LI S, LIU Y J, XU D, et al. Conjugated polycopper phthalocyanine as the anode-active material with high specific capacity for lithium-organic batteries[J]. Materials Letters, 2023, 333: 133682. DOI: 10.1016/j.matlet.2022.133682.
|
11 |
LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: 101714. DOI: 10.1016/j.est.2020.101714.
|
12 |
王淮斌, 李阳, 王钦正, 等. 三元锂离子动力电池热失控及蔓延特性实验研究[J]. 工程科学学报, 2021, 43(5): 663-675. DOI: 10.13374/j.issn2095-9389.2020.10.27.002.
|
|
WANG H B, LI Y, WANG Q Z, et al. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering, 2021, 43(5): 663-675. DOI: 10.13374/j.issn2095-9389.2020.10.27.002.
|
13 |
WANG H B, XU H, ZHAO Z Y, et al. An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries[J]. Applied Thermal Engineering, 2022, 211: 118418. DOI: 10.1016/j.applthermaleng.2022.118418.
|
14 |
ZHOU Z Z, LI M Y, ZHOU X D, et al. Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery[J]. Applied Energy, 2023, 349: 121690. DOI: 10.1016/j.apenergy.2023.121690.
|
15 |
ZHU M H, ZHANG S Y, CHEN Y, et al. Experimental and analytical investigation on the thermal runaway propagation characteristics of lithium-ion battery module with NCM pouch cells under various state of charge and spacing[J]. Journal of Energy Storage, 2023, 72: 108380. DOI: 10.1016/j.est. 2023. 108380.
|
16 |
SONG L F, HUANG Z H, MEI W X, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078. DOI: 10.1016/j.psep. 2022. 12.082.
|
17 |
LIU J L, ZHANG Y, ZHOU L F, et al. Influencing factors of lithium-ion battery thermal runaway in confined space[J]. Journal of Energy Storage, 2023, 73: 109125. DOI: 10.1016/j.est. 2023. 109125.
|
18 |
OUYANG M G, REN D S, LU L G, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+LiyMn2O4 composite cathode[J]. Journal of Power Sources, 2015, 279: 626-635. DOI: 10.1016/j.jpowsour. 2015.01.051.
|
19 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009.
|
20 |
GAO T F, WANG Z R, CHEN S C, et al. Hazardous characteristics of charge and discharge of lithium-ion batteries under adiabatic environment and hot environment[J]. International Journal of Heat and Mass Transfer, 2019, 141: 419-431. DOI: 10.1016/j.ijheatmasstransfer.2019.06.075.
|
21 |
WANG Y, GAO Q, WANG G H, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. International Journal of Energy Research, 2018, 42(13): 4008-4033. DOI: 10.1002/er.4158.
|