1 |
FANG Y J, XIAO L F, CHEN Z X, et al. Recent advances in sodium-ion battery materials[J]. Electrochemical Energy Reviews, 2018, 1(3): 294-323. DOI: 10.1007/s41918-018-0008-x.
|
2 |
曹余良. 钠离子电池机遇与挑战[J]. 储能科学与技术, 2020, 9(3): 757-761. DOI: 10.19799/j.cnki.2095-4239.2020.0026.
|
|
CAO Y L. The opportunities and challenges of sodium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. DOI: 10.19799/j.cnki.2095-4239.2020.0026.
|
3 |
ZHAO A L, LIU C Y, JI F J, et al. Revealing the phase evolution in Na4FexP4O12+ x (2≤x≤4) cathode materials[J]. ACS Energy Letters, 2023, 8(1): 753-761. DOI: 10.1021/acsenergylett.2c02693.
|
4 |
郭慧芳, 程树国, 郑舒. 从电解液看磷酸铁锂动力锂离子电池失效[J]. 电池, 2023, 53(5): 549-553. DOI: 10.19535/j.1001-1579. 2023.05.018.
|
|
GUO H F, CHENG S G, ZHENG S. Failure of lithium iron phosphate power Li-ion battery seen from electrolyte[J]. Battery Bimonthly, 2023, 53(5): 549-553. DOI: 10.19535/j.1001-1579.2023.05.018.
|
5 |
VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. DOI: 10.1016/j.jpowsour.2005.01.006.
|
6 |
MARKOVSKY B, RODKIN A, COHEN Y S, et al. The study of capacity fading processes of Li-ion batteries: Major factors that play a role[J]. Journal of Power Sources, 2003, 119: 504-510. DOI: 10.1016/S0378-7753(03)00274-X.
|
7 |
ZHUANG G V, ROSS P N. Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy[J]. Electrochemical and Solid-State Letters, 2003, 6(7): A136. DOI: 10.1149/1.1575594.
|
8 |
HELLQVIST KJELL M, MALMGREN S, CIOSEK K, et al. Comparing aging of graphite/LiFePO4 cells at 22 ℃ and 55 ℃-Electrochemical and photoelectron spectroscopy studies[J]. Journal of Power Sources, 2013, 243: 290-298. DOI: 10.1016/j.jpowsour.2013.06.011.
|
9 |
SCHMITT J, MAHESHWARI A, HECK M, et al. Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging[J]. Journal of Power Sources, 2017, 353: 183-194. DOI: 10.1016/j.jpowsour. 2017. 03.090.
|
10 |
MOGENSEN R, BRANDELL D, YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries[J]. ACS Energy Letters, 2016, 1(6): 1173-1178. DOI: 10.1021/acsenergylett.6b00491.
|
11 |
ZHAN C, WU T P, LU J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-a critical review[J]. Energy & Environmental Science, 2018, 11(2): 243-257. DOI: 10.1039/C7EE03122J.
|
12 |
ZHANG Y X, KIM J C, SONG H W, et al. Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries[J]. Nanoscale, 2023, 15(9): 4195-4218. DOI: 10.1039/d2nr05701h.
|
13 |
赵旭瞳, 龚文琦, 沈琪彬, 等. 嵌钠深度对离电钠离子电池碳极储硬碳负极存储能性能的响影响[J]. 广州化学, 2023, 48(6): 57-60+69.
|
14 |
MA L A, NAYLOR A J, NYHOLM L, et al. Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2021, 60(9): 4855-4863. DOI: 10.1002/anie.202013803.
|
15 |
LIU K L, ASHWIN T R, HU X S, et al. An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110017. DOI: 10.1016/j.rser.2020.110017.
|
16 |
储能技术领航.鹏辉能源2023新一代电芯发布[EB/OL]. [2023-04-11]. https://news.bjx.com.cn/html/20230411/1300394.shtml.
|
17 |
RIKKA V R, SAHU S R, GURUMURTHY M, et al. Temperature-derived Fe dissolution of a LiFePO4/graphite cell at fast charging and high state-of-charge condition[J]. Energy Technology, 2023, 11(11): 2201388. DOI: 10.1002/ente.202201388.
|
18 |
周权. 高功率高安全钠离子电池研究及失效分析[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2021. DOI: 10.27604/d.cnki.gwlys.2021.000031.
|
19 |
LIU Y, XIE K, PAN Y, et al. Impacts of the properties of anode solid electrolyte interface on the storage life of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2018, 122(17): 9411-9416. DOI: 10.1021/acs.jpcc.7b11757.
|
20 |
TASAKI K, GOLDBERG A, LIAN J J, et al. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents[J]. Journal of the Electrochemical Society, 2009, 156(12): A1019. DOI: 10.1149/1.3239850.
|
21 |
WANG E H, WAN J, GUO Y J, et al. Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2023, 62(4): e202216354. DOI: 10.1002/anie.202216354.
|
22 |
LIU M Q, WU F, GONG Y T, et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries[J]. Advanced Materials, 2023, 35(29): e2300002. DOI: 10.1002/adma.202300002.
|
23 |
LV Z Q, LI T Y, HOU X, et al. Solvation structure and solid electrolyte interface engineering for excellent Na+ storage performances of hard carbon with the ether-based electrolytes[J]. Chemical Engineering Journal, 2022, 430: 133143. DOI: 10.1016/j.cej.2021.133143.
|
24 |
HU J Y, WANG H W, YUAN F, et al. Deciphering the formation and accumulation of solid-electrolyte interphases in Na and K carbonate-based batteries[J]. Nano Letters, 2024, 24(5): 1673-1678. DOI: 10.1021/acs.nanolett.3c04401.
|