1 |
ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13(1): 2261. DOI: 10.1038/s41467-022-29837-w.
|
2 |
JUNG H G, JANG M W, HASSOUN J, et al. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery[J]. Nature Communications, 2011, 2: 516. DOI: 10.1038/ncomms1527.
|
3 |
WANG X W, ZHU J G, DAI H F, et al. Impedance investigation of silicon/graphite anode during cycling[J]. Batteries, 2023, 9(5): 242. DOI: 10.3390/batteries9050242.
|
4 |
DING S C, LI Y D, DAI H F, et al. Accurate model parameter identification to boost precise aging prediction of lithium-ion batteries: A review[J]. Advanced Energy Materials, 2023, 13(39): 2301452. DOI: 10.1002/aenm.202301452.
|
5 |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10.1016/j.joule.2020.02.010.
|
6 |
HUANG J Q, BOLES S T, TARASCON J M. Sensing as the key to battery lifetime and sustainability[J]. Nature Sustainability, 2022, 5: 194-204. DOI: 10.1038/s41893-022-00859-y.
|
7 |
WEI Z B, ZHAO J Y, HE H W, et al. Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement[J]. Journal of Power Sources, 2021, 489: 229462. DOI: 10.1016/j.jpowsour.2021.229462.
|
8 |
FICHTNER M, EDSTRÖM K, AYERBE E, et al. Rechargeable batteries of the future — The state of the art from a BATTERY 2030+ perspective[J]. Advanced Energy Materials, 2022, 12(17): 2102904. DOI: 10.1002/aenm.202102904.
|
9 |
HEENAN T M M, MOMBRINI I, LLEWELLYN A, et al. Mapping internal temperatures during high-rate battery applications[J]. Nature, 2023, 617(7961): 507-512. DOI: 10.1038/s41586-023-05913-z.
|
10 |
LU X B, TARASCON J M, HUANG J Q. Perspective on commercializing smart sensing for batteries[J]. eTransportation, 2022, 14: 100207. DOI: 10.1016/j.etran.2022.100207.
|
11 |
FURAT O, FINEGAN D P, YANG Z Z, et al. Quantifying the impact of operating temperature on cracking in battery electrodes, using super-resolution of microscopy images and stereology[J]. Energy Storage Materials, 2024, 64: 103036. DOI: 10.1016/j.ensm.2023.103036.
|
12 |
STURM J, FRIEDRICH S, GENIES S, et al. Experimental analysis of short-circuit scenarios applied to silicon-graphite/nickel-rich lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): 020569. DOI: 10.1149/1945-7111/ac51f3.
|
13 |
YU Y F, VERGORI E, WORWOOD D, et al. Distribsuted thermal monitoring of lithium ion batteries with optical fibre sensors[J]. Journal of Energy Storage, 2021, 39: 102560. DOI: 10.1016/j.est.2021.102560.
|
14 |
LI Y D, WANG W W, YANG X G, et al. A smart Li-ion battery with self-sensing capabilities for enhanced life and safety[J]. Journal of Power Sources, 2022, 546: 231705. DOI: 10.1016/j.jpowsour.2022.231705.
|
15 |
WANG X W, ZHU J G, WEI X Z, et al. Non-damaged lithium-ion batteries integrated functional electrode for operando temperature sensing[J]. Energy Storage Materials, 2024, 65: 103160. DOI: 10.1016/j.ensm.2023.103160.
|
16 |
MEI W X, LIU Z, WANG C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1): 5251. DOI: 10.1038/s41467-023-40995-3.
|
17 |
HUANG J Q, ALBERO BLANQUER L, BONEFACINO J, et al. operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020, 5(9): 674-683. DOI: 10.1038/s41560-020-0665-y.
|
18 |
LEE C Y, LEE S J, CHEN Y H, et al. In-situ monitoring of temperature and voltage in lithium-ion battery by embedded flexible micro temperature and voltage sensor[J]. International Journal of Electrochemical Science, 2013, 8(2): 2968-2976. DOI: 10.1016/S1452-3981(23)14365-3.
|
19 |
LEE C Y, LEE S J, TANG M S, et al. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors, 2011, 11(10): 9942-9950. DOI: 10.3390/s111009942.
|
20 |
YU Y F, VERGORI E, MADDAR F, et al. Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre[J]. Journal of Power Sources, 2022, 521: 230957. DOI: 10.1016/j.jpowsour. 2021.230957.
|
21 |
FLEMING J, AMIETSZAJEW T, CHARMET J, et al. The design and impact of in situ and operando thermal sensing for smart energy storage[J]. Journal of Energy Storage, 2019, 22: 36-43. DOI: 10.1016/j.est.2019.01.026.
|
22 |
WANG X Y, LI R K, DAI H F, et al. A novel dualtime scalelife prediction method for lithium-ion batteries considering effects of temperature and state of charge[J]. International Journal of Energy Research, 2021, 45(10): 14692-14709. DOI: 10.1002/er.6746.
|
23 |
狄云, 周正柱, 党会鸿, 等. 基于ECM的电芯电-热耦合建模与验证[J]. 储能科学与技术, 2023, 12(8): 2638-2648. DOI: 10.19799/j.cnki.2095-4239.2023.0080.
|
|
DI Y, ZHOU Z Z, DANG H H, et al. Modeling and verification of electric-thermal coupling in batteries based on ECM[J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648. DOI: 10.19799/j.cnki.2095-4239.2023.0080.
|
24 |
WANG X W, WEI K, TAO Y, et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J]. Composite Structures, 2019, 209: 523-534. DOI: 10.1016/j.compstruct. 2018.11.004.
|
25 |
QIN N, JIN L M, XING G G, et al. Decoupling accurate electrochemical behaviors for high-capacity electrodes via reviving three-electrode vehicles[J]. Advanced Energy Materials, 2023, 13(11): 2204077. DOI: 10.1002/aenm.202204077.
|
26 |
周星. 基于阻抗的锂离子电池动态建模、全频表征与快速诊断[D]. 长沙: 国防科技大学, 2019. DOI: 10.27052/d.cnki.gzjgu. 2019.000410.
|
|
ZHOU X. Dynamic modeling, full-frequency characterization and rapid diagnosis of lithium-ion battery based on impedance[D]. Changsha: National University of Defense Technology, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000410.
|