1 |
MOY K, LEE S B, HARRIS S, et al. Design and validation of synthetic duty cycles for grid energy storage dispatch using lithium-ion batteries[J]. Advances in Applied Energy, 2021, 4: 100065. DOI: 10.1016/j.adapen.2021.100065.
|
2 |
ZHAO G L, BAKER J. Effects on environmental impacts of introducing electric vehicle batteries as storage - A case study of the United Kingdom[J]. Energy Strategy Reviews, 2022, 40: 100819. DOI: 10.1016/j.esr.2022.100819.
|
3 |
HU X J, GAO F F, XIAO Y, et al. Advancements in the safety of Lithium-Ion Battery: The Trigger, consequence and mitigation method of thermal runaway[J]. Chemical Engineering Journal, 2024, 481: 148450. DOI: 10.1016/j.cej.2023.148450.
|
4 |
ZHOU G, NIU C X, KONG Y, et al. Research on stimulation responsive electrolytes from the perspective of thermal runaway in lithium-ion batteries: A review[J]. Fuel, 2024, 368: 131599. DOI: 10.1016/j.fuel.2024.131599.
|
5 |
WU X G, WEI Z X, WEN T, et al. Research on short-circuit fault-diagnosis strategy of lithium-ion battery in an energy-storage system based on voltage cosine similarity[J]. Journal of Energy Storage, 2023, 71: 108012. DOI: 10.1016/j.est.2023.108012.
|
6 |
OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. DOI: 10.1016/j.jpowsour.2015.06.087.
|
7 |
LAI X, JIN C Y, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives[J]. Energy Storage Materials, 2021, 35: 470-499. DOI: 10.1016/j.ensm.2020.11.026.
|
8 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013.
|
9 |
LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining. December 15-19, 2008, Pisa, Italy. IEEE, 2008: 413-422. DOI: 10.1109/ICDM. 2008.17.
|
10 |
LIU T, ZHOU Z, YANG L J. Layered isolation forest: A multi-level subspace algorithm for improving isolation forest[J]. Neurocomputing, 2024, 581: 127525. DOI: 10.1016/j.neucom. 2024.127525.
|
11 |
程贤福, 马晓冬, 曾建邦, 等. 基于孤立森林算法的动力电池不一致单体识别与预警方法[J]. 华东交通大学学报, 2023, 40(2): 95-102. DOI: 10.16749/j.cnki.jecjtu.2023.02.002.
|
|
CHENG X F, MA X D, ZENG J B, et al. Inconsistent monomer identification and warning method for power batteries based on isolated forests[J]. Journal of East China Jiaotong University, 2023, 40(2): 95-102. DOI: 10.16749/j.cnki.jecjtu.2023.02.002.
|
12 |
JIANG J C, LI T Y, CHANG C, et al. Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm[J]. Journal of Energy Storage, 2022, 50: 104177. DOI: 10.1016/j.est.2022.104177.
|
13 |
杨双齐. 基于机器学习的舰船轮机设备多发故障信号监测[J]. 舰船科学技术, 2023, 45(16): 100-103. DOI: 10.3404/j.issn.1672-7649.2023.16.020.
|
|
YANG S Q. Machine learning based monitoring of multiple fault signals in marine engine equipment[J]. Ship Science and Technology, 2023, 45(16): 100-103. DOI: 10.3404/j.issn.1672-7649.2023.16.020.
|
14 |
PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. DOI: 10.48550/arXiv.1201.0490.
|
15 |
郗婕, 傅微. 基于机器学习的流域尺度森林火灾灾害风险预测[J]. 自然灾害学报, 2024, 33(1): 89-98. DOI: 10.13577/j.jnd.2024.0108.
|
|
XI J, FU W. Watershed-scale forest fire risk prediction based on machine learning[J]. Journal of Natural Disasters, 2024, 33(1): 89-98. DOI: 10.13577/j.jnd.2024.0108.
|
16 |
QIAO D D, WANG X Y, LAI X, et al. Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method[J]. Energy, 2022, 243: 123082. DOI: 10.1016/j.energy.2021.123082.
|
17 |
MA M N, DUAN Q L, LI X Y, et al. Fault diagnosis of external soft-short circuit for series connected lithium-ion battery pack based on modified dual extended Kalman filter[J]. Journal of Energy Storage, 2021, 41: 102902. DOI: 10.1016/j.est.2021.102902.
|
18 |
王君瑞, 吴新举, 赵东琦, 等. 基于 WOA-VMD 与 PSO-SVM 的锂离子电池内短路故障诊断方法[J]. 工程科学学报, 2023, 45(12): 2162-2172. DOI:10.13374/j.issn2095-9389.2022.10.04.004.
|
|
WANG J R,WU X J,ZHAO D Q, et al. Research on internal short-circuit fault diagnosis methods for lithium-ion batteries based on WOA-VMD and PSO-SVM[J]. Chinese Journal of Engineering, 2023, 45(12): 2162-2172. DOI:10.13374/j.issn2095-9389. 2022. 10.04.004.
|