1 |
张爱芳, 魏邦达, 李卓昊, 等. 全钒液流电池建模及SOC在线估计研究进展[J]. 储能科学与技术, 2024, 13(3): 1036-1049. DOI: 10.19799/j.cnki.2095-4239.2023.0734.
|
|
ZHANG A F, WEI B D, LI Z H, et al. Research progress on modeling and SOC online estimation of vanadium redox-flow batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 1036-1049. DOI: 10.19799/j.cnki.2095-4239.2023.0734.
|
2 |
徐冉, 王宝冬, 王绍亮, 等.杂原子掺杂电极用于全钒液流电池中的研究进展[J].储能科学与技术, 2024, 13(6): 1849-1860. DOI: 10.19799/j.cnki.2095-4239.2023.0929.
|
|
XU R, WANG B D, WANG S L, et al. Research progress on heteroatom doped electrodes used in all vanadium flow batteries [J]. Energy Storage Science and Technology, 2024, 13(06): 1849-1860. DOI: 10.19799/j.cnki.2095-4239.2023.0929.
|
3 |
LI Z Y, WANG M R, YANG J W, et al. A quantitative analysis method of complex sulfide components for understanding initial capacity degradation mechanism in lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2024, 662: 1086-1095. DOI: 10.1016/j.jcis.2024.02.017.
|
4 |
ROSCHER V, RIEMSCHNEIDER K R. Method and measurement setup for battery state determination using optical effects in the electrode material[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(4): 735-744. DOI: 10.1109/TIM. 2017. 2782018.
|
5 |
JIN S, WANG C, ZHEN Z Z, et al. Estimation of temperature for premixed flame by relative permittivity and conductivity[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 4502810. DOI: 10.1109/TIM.2024.3366578.
|
6 |
XIONG B Y, ZHAO J Y, WEI Z B, et al. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model[J]. Journal of Power Sources, 2014, 262: 50-61. DOI: 10.1016/j.jpowsour. 2014.03.110.
|
7 |
WEI Z B, TSENG K J, WAI N, et al. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery[J]. Journal of Power Sources, 2016, 332: 389-398. DOI: 10.1016/j.jpowsour.2016.09.123.
|
8 |
郭向伟, 李璐颖, 王晨, 等. 自适应渐消无迹卡尔曼滤波锂电池SoC估计[J]. 电子测量与仪器学报, 2024, 38(3): 167-175. DOI: 10.13382/j.jemi.B2306921.
|
|
GUO X W, LI L Y, WANG C, et al. SoC estimation of lithium battery based on adaptive fading unscented Kalman filter[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(3): 167-175. DOI: 10.13382/j.jemi.B2306921.
|
9 |
邓丹, 刘胜永, 王顺利, 等. 基于FFRLS和ASR-UKF滤波算法的锂电池SOC估计[J]. 电源技术, 2024, 48(2): 299-305.
|
|
DENG D, LIU S Y, WANG S L, et al. Lithium battery SOC estimation based on FFRLS and ASR-UKF filtering algorithm[J]. Chinese Journal of Power Sources, 2024, 48(2): 299-305.
|
10 |
FENG X, CHEN J X, ZHANG Z W, et al. State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network[J]. Energy, 2021, 236: 121360. DOI: 10.1016/j.energy.2021.121360.
|
11 |
ZHANG X S, LIU X J, LI J H. A novel method for battery SOC estimation based on slime mould algorithm optimizing neural network under the condition of low battery SOC value[J]. Electronics, 2023, 12(18): 3924. DOI: 10.3390/electronics 12183924.
|
12 |
陈清炀, 何映晖, 余官定, 等. 模型与数据双驱动的锂电池状态精准估计[J]. 储能科学与技术, 2023, 12(1): 209-217. DOI: 10.19799/j.cnki.2095-4239.2022.0508.
|
|
CHEN Q Y, HE Y H, YU G D, et al. Integrating model-and data-driven methods for accurate state estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. DOI: 10.19799/j.cnki.2095-4239.2022.0508.
|
13 |
XIONG R, HE H W, SUN F C, et al. Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 229: 159-169. DOI: 10.1016/j.jpowsour.2012.12.003.
|
14 |
ZHENG F D, JIANG J C, SUN B X, et al. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles[J]. Energy, 2016, 113: 64-75. DOI: 10.1016/j.energy.2016.06.010.
|
15 |
金鑫娜, 顾启蒙, 潘宇巍, 等. 锂离子动力电池SOP在线估计方法研究[J]. 电源技术, 2019, 43(9): 1448-1452. DOI: 10.3969/j.issn.1002-087X.2019.09.011.
|
|
JIN X N, GU Q M, PAN Y W, et al. Online state of power estimation methods for lithium-ion batteries in EV[J]. Chinese Journal of Power Sources, 2019, 43(9): 1448-1452. DOI: 10.3969/j.issn.1002-087X.2019.09.011.
|
16 |
SUN F C, XIONG R, HE H W. Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions[J]. Journal of Power Sources, 2014, 259: 166-176. DOI: 10.1016/j.jpowsour.2014.02.095.
|
17 |
ZOU C F, KLINTBERG A, WEI Z B, et al. Power capability prediction for lithium-ion batteries using economic nonlinear model predictive control[J]. Journal of Power Sources, 2018, 396: 580-589. DOI: 10.1016/j.jpowsour.2018.06.034.
|
18 |
FARMANN A, SAUER D U. A comprehensive review of on-board state-of-available-power prediction techniques for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2016, 329: 123-137. DOI: 10.1016/j.jpowsour.2016.08.031.
|
19 |
WEI Z B, MENG S J, TSENG K J, et al. An adaptive model for vanadium redox flow battery and its application for online peak power estimation[J]. Journal of Power Sources, 2017, 344: 195-207. DOI: 10.1016/j.jpowsour.2017.01.102.
|
20 |
XIONG B Y, DONG S D, LI Y, et al. Peak power estimation of vanadium redox flow batteries based on receding horizon control[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 154-165. DOI: 10.1109/JESTPE. 2022. 3152588.
|
21 |
安治国, 田茂飞, 赵琳, 等. 基于自适应无迹卡尔曼滤波的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(5): 856-861. DOI: 10.12028/j.issn.2095-4239.2019.0113.
|
|
AN Z G, TIAN M F, ZHAO L, et al. SOC estimation of lithium battery based on adaptive untracked Kalman filter[J]. Energy Storage Science and Technology, 2019, 8(5): 856-861. DOI: 10.12028/j.issn.2095-4239.2019.0113.
|
22 |
HOU J, LIU J W, CHEN F W, et al. Robust lithium-ion state-of-charge and battery parameters joint estimation based on an enhanced adaptive unscented Kalman filter[J]. Energy, 2023, 271: 126998. DOI: 10.1016/j.energy.2023.126998.
|
23 |
孙乐平, 韩帅, 吴宛潞, 等. 基于经济模型预测控制的多虚拟电厂两阶段协调优化调度[J]. 储能科学与技术, 2021, 10(5): 1845-1853. DOI: 10.19799/j.cnki.2095-4239.2021.0195.
|
|
SUN L P, HAN S, WU W L, et al. Coordinated optimal scheduling of multiple virtual power plants in multiple time scales based on economic model predictive control[J]. Energy Storage Science and Technology, 2021, 10(5): 1845-1853. DOI: 10.19799/j.cnki.2095-4239.2021.0195.
|
24 |
HU M J, LI C K, BIAN Y G, et al. Fuel economy-oriented vehicle platoon control using economic model predictive control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 20836-20849. DOI: 10.1109/TITS.2022.3183090.
|
25 |
赵安军, 米璐, 于军琪, 等. 多区域建筑灰箱建模及参数辨识方法[J]. 建筑科学, 2023, 39(12): 222-231, 254. DOI: 10.13614/j.cnki.11-1962/tu.2023.12.25.
|
|
ZHAO A J, MI L, YU J Q, et al. Multi-zone building grey-box modeling and parameter identification method[J]. Building Science, 2023, 39(12): 222-231, 254. DOI: 10.13614/j.cnki.11-1962/tu.2023.12.25.
|
26 |
ESFANDYARI M J, HAIRI YAZDI M R, ESFAHANIAN V, et al. A hybrid model predictive and fuzzy logic based control method for state of power estimation of series-connected lithium-ion batteries in HEVs[J]. Journal of Energy Storage, 2019, 24: 100758. DOI: 10.1016/j.est.2019.100758.
|