1 |
陈桂泉, 沙盈吟, 赵威风, 等. 动力电池老化诱发热失控机理仿真[J]. 储能科学与技术, 2022, 11(12): 3987-3998.
|
|
CHEN G Q, SHA Y Y, ZHAO W F, et al. Simulation study on the mechanism and process of thermal runaway induced by aging of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3987-3998.
|
2 |
孙涛, 郑侠, 郑岳久, 等. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504.
|
|
SUN T, ZHENG X, ZHENG Y J, et al. Fast charging control of lithium-ion batteries based on electrochemical-thermal coupling model[J]. Automotive Engineering, 2022, 44(4): 495-504.
|
3 |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
|
4 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5.
|
5 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526.
|
6 |
DU S L, LAI Y Q, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510.
|
7 |
MEI W X, CHEN H D, SUN J H, et al. Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165.
|
8 |
LIN X W, ZHOU Z F, ZHU X G, et al. Non-uniform thermal characteristics investigation of three-dimensional electrochemical-thermal coupled model for pouch lithium-ion battery[J]. Journal of Cleaner Production, 2023, 417: 137912.
|
9 |
HUANG Y F, LAI X, REN D S, et al. Thermal and stoichiometry inhomogeneity investigation of large-format lithium-ion batteries via a three-dimensional electrochemical-thermal coupling model[J]. Electrochimica Acta, 2023, 468: 143212.
|
10 |
LI J H, HUANG J H, CAO M. Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries[J]. Applied Thermal Engineering, 2018, 131: 660-668.
|
11 |
THOMAS E V, CASE H L, DOUGHTY D H, et al. Accelerated power degradation of Li-ion cells[J]. Journal of Power Sources, 2003, 124(1): 254-260.
|
12 |
PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382.
|
13 |
WANG S P, ZHANG D F, LI C H, et al. Numerical optimization for a phase change material based lithium-ion battery thermal management system[J]. Applied Thermal Engineering, 2023, 222: 119839.
|
14 |
WU X H, WANG K, CHANG Z J, et al. Experimental and numerical study on hybrid battery thermal management system combining liquid cooling with phase change materials[J]. International Communications in Heat and Mass Transfer, 2022, 139: 106480.
|
15 |
KENISARIN M, MAHKAMOV K, KAHWASH F, et al. Enhancing thermal conductivity of paraffin wax 53–57 ℃ using expanded graphite[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110026.
|
16 |
SARI A, KARAIPEKLI A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27(8/9): 1271-1277.
|
17 |
WANG Q, ZHOU D, CHEN Y, et al. Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites [J]. Pergamon, 2020, 147(1): 1131-1138.
|
18 |
ZHANG X, LIU C Z, RAO Z H. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material[J]. Journal of Cleaner Production, 2018, 201: 916-924.
|
19 |
BAIS A, SUBHEDAR D, PANCHAL S. Experimental investigation of longevity and temperature of a lithium-ion battery cell using phase change material based battery thermal management system[J]. Materials Today: Proceedings, 2023
|
20 |
AN Z J, JIA L, WEI L T, et al. Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model[J]. Applied Thermal Engineering, 2018, 137: 792-807.
|
21 |
JIANG F M, PENG P, SUN Y Q. Thermal analyses of LiFePO4/graphite battery discharge processes[J]. Journal of Power Sources, 2013, 243: 181-194.
|
22 |
LAI Y Q, DU S L, AI L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049.
|
23 |
GUO Z J, WANG Y, ZHAO S Y, et al. Investigation of battery thermal management system with considering effect of battery aging and nanofluids[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123685.
|
24 |
黄菊花, 陈强, 曹铭, 等. 相变材料与水套式液冷结构耦合的圆柱型锂离子电池组热管理仿真分析[J]. 储能科学与技术, 2021, 10(4): 1423-1431.
|
|
HUANG J H, CHEN Q, CAO M, et al. Thermal management simulation analysis of cylindrical lithium-ion battery pack coupled with phase change material and water-jacketed liquid-cooled structures[J]. Energy Storage Science and Technology, 2021, 10(4): 1423-1431.
|