储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1266-1276.doi: 10.19799/j.cnki.2095-4239.2024.0098
• 电池智能制造、在线监测与原位分析专刊 • 上一篇 下一篇
李炳金1(), 韩晓霞1(), 张文杰1, 曾伟国2, 武晋德1
收稿日期:
2024-01-30
修回日期:
2024-02-05
出版日期:
2024-04-26
发布日期:
2024-04-22
通讯作者:
韩晓霞
E-mail:2498766025@qq.com;hanxiaoxia@tyut.edu.cn
作者简介:
李炳金(2000—),男,硕士研究生,研究方向为锂电池寿命预测,E-mail:2498766025@qq.com;
基金资助:
Bingjin LI1(), Xiaoxia HAN1(), Wenjie ZHANG1, Weiguo ZENG2, Jinde WU1
Received:
2024-01-30
Revised:
2024-02-05
Online:
2024-04-26
Published:
2024-04-22
Contact:
Xiaoxia HAN
E-mail:2498766025@qq.com;hanxiaoxia@tyut.edu.cn
摘要:
近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本综述全面分析了锂电池剩余使用寿命预测领域研究现状,系统介绍了现有预测算法,并着重探讨了机器学习方法在该领域的应用。基于模型的方法包括电化学模型、等效电路模型和经验退化模型;基于数据驱动的方法涵盖了支持向量回归、高斯过程回归、极限学习机、卷积神经网络、循环神经网络和Transformer等常用的机器学习方法。本文详细分析了每种方法的优缺点,并重点阐述了机器学习方法在特征提取与融合方法等方面的应用及发展情况。对于特征提取,本文从电流电压温度曲线、IC曲线、EIS曲线中进行总结分析;对于融合方法,本文将其细分为模型-模型、数据-模型、数据-数据融合方法并进行分析。最后,针对当前研究存在的问题,本综述从早期预测、在线预测和多工况预测3个方面提出了对剩余使用寿命预测方法的研究建议,为提升锂电池剩余使用寿命预测算法的准确性和实用性提供思路。
中图分类号:
李炳金, 韩晓霞, 张文杰, 曾伟国, 武晋德. 锂离子电池剩余使用寿命预测方法综述[J]. 储能科学与技术, 2024, 13(4): 1266-1276.
Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276.
表1
其他特征选择"
预测方法 | 参考文献 | 输入特征 | 实验数据 | 评价指标 | 预测误差 |
---|---|---|---|---|---|
SVM | [ | 等压降充电时间差、等压降发电时间差 | NASA CALCE | RMSE | <2.5% |
[ | 电压和温度曲线中的信号能量、曲率指数、凹凸指数、峰度指数 | NASA | RMSE | 0.357% | |
GPR | [ | 放电容量差 | CALCE | MAE RMSE | <1% <1.3% |
[ | 最低放电电压对应时间、等压降放电时间、温度最高点对应时间 | NASA | — | — | |
[ | 恒流充电容量、电阻、峰值电压、电池单体与电池组的不一致性 | 实验数据 | MAE RMSE | 2 1 | |
CNN | [ | 阻抗曲线 | 实验数据 | RMSE | 0.233% |
RNN | [ | 温度、充电速率、SOC | 实验数据 | — | — |
[ | 差分热伏安曲线波峰 | NASA | RMSE | <1% |
表2
使用融合方法的RUL预测模型"
融合方法 | 参考文献 | 实验数据 | 评价指标 | 预测精度 | 特点 |
---|---|---|---|---|---|
LSSVM+双UPF | [ | NASA CALCE | RMSE | 0.0980 | 使用相空间重构将二维数据映射到高维空间,挖掘数据中的隐藏信息 |
PF+LSTM | [ | NASA | MAE | 3.3309 | 构建从测量数据到系统状态的映射 |
PSO+ELM+RVM | [ | NASA CALCE | 循环次数 | <9 | 可以间接预测具有置信区间的RUL |
堆叠回归 | [ | NASA | RMSE MAE | 0.01732 | 将多种回归方法堆叠,需要调整的参数较少 |
CNN+GPR+双指数模型 | [ | [ | — | — | 在早期预测中有优越性 |
双GPR+GRU | [ | NASA CALCE | 循环次数 | <2 | 实际计算复杂度低 |
GPR+LSTM | [ | NASA CALCE MIT-Stanford | RMSE MAE | 0.01057 0.00659 | 在早期预测中有较强的泛化能力和不确定性管理能力 |
集成学习器 | [ | CALCE | RMSE | <0.0274 | 结合RVM、随机森林、弹性网络、自回归模型、LSTM,通过遗传算法确定每个学习器权重。具有较好的鲁棒性和泛化性 |
1 | RAUF H, KHALID M, ARSHAD N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111903. |
2 | HASHEMZADEH P, DÉSILETS M, LACROIX M, et al. Investigation of the P2D and of the modified single-particle models for predicting the nonlinear behavior of Li-ion batteries[J]. Journal of Energy Storage, 2022, 52: 104909. |
3 | ZHAO W, LUO G, WANG C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217. |
4 | CHU Z Y, JOBMAN R, RODRÍGUEZ A, et al. A control-oriented electrochemical model for lithium-ion battery. Part Ⅱ: Parameter identification based on reference electrode[J]. Journal of Energy Storage, 2020, 27: 101101. |
5 | LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. |
6 | LIN X Y, TANG Y L, REN J, et al. State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model[J]. Journal of Energy Storage, 2021, 41: 102840. |
7 | HINZ H. Comparison of lithium-ion battery models for simulating storage systems in distributed power generation[J]. Inventions, 2019, 4(3): 41. |
8 | FENG T H, YANG L, ZHAO X W, et al. Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction[J]. Journal of Power Sources, 2015, 281: 192-203. |
9 | KIM T, WANG Y B, SAHINOGLU Z, et al. Fast UD factorization-based RLS online parameter identification for model-based condition monitoring of lithium-ion batteries[C]//2014 American Control Conference. Portland, OR, USA. IEEE, 2014: 4410-4415. |
10 | ZHANG Q, SHANG Y L, LI Y, et al. A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries[J]. ISA Transactions, 2020, 97: 448-457. |
11 | MICEA M V, UNGUREAN L, CÂRSTOIU G N, et al. Online state-of-health assessment for battery management systems[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 1997-2006. |
12 | WANG D, YANG F F, TSUI K L, et al. Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1282-1291. |
13 | HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. |
14 | ZHANG Y, TU L, XUE Z W, et al. Weight optimized unscented Kalman filter for degradation trend prediction of lithium-ion battery with error compensation strategy[J]. Energy, 2022, 251: 123890. |
15 | XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. |
16 | ZHANG L J, MU Z Q, SUN C Y. Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access, 2018, 6: 17729-17740. |
17 | HURIA T, LUDOVICI G, LUTZEMBERGER G. State of charge estimation of high power lithium iron phosphate cells[J]. Journal of Power Sources, 2014, 249: 92-102. |
18 | 袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状[J]. 自动化学报, 2020, 46(10): 2013-2030. |
YUAN Y, ZHANG Y, DING H. Research on key technology of industrial artificial intelligence and its application in predictive maintenance[J]. Acta Automatica Sinica, 2020, 46(10): 2013-2030. | |
19 | GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: 109057. |
20 | 马朝君, 彭巨擘, 袁海滨, 等. 基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测[J]. 有色金属(冶炼部分), 2024(2): 1-7. |
MA C J, MA C J, PENG J Z, YUAN H B, et al. Energy consumption prediction of tin smelting based on grey wolf optimized support vector machine regression and SHAP values[J]. Nonferrous Metals (Extractive Metallurgy), 2024(2): 1-7. | |
21 | GUO Y F, HUANG K, HU X Y. A state-of-health estimation method of lithium-ion batteries based on multi-feature extracted from constant current charging curve[J]. Journal of Energy Storage, 2021, 36: 102372. |
22 | LI R, LI W R, ZHANG H N. State of health and charge estimation based on adaptive boosting integrated with particle swarm optimization/support vector machine (AdaBoost-PSO-SVM) model for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2022, 17(2): 220212. |
23 | LIN M Q, YAN C H, MENG J H, et al. Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression[J]. Energy, 2022, 250: 123829. |
24 | GUO Y F, HUANG K, YU X Y, et al. State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR[J]. Electrochimica Acta, 2022, 428: 140940. |
25 | RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357: 209-219. |
26 | YANG D, ZHANG X, PAN R, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384: 387-395. |
27 | LIU K L, HU X S, WEI Z B, et al. Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2019, 5(4): 1225-1236. |
28 | FENG H L, SHI G L. SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression[J]. Journal of Power Electronics, 2021, 21(12): 1845-1854. |
29 | 李井竹, 刘秋菊, 王仲英. 基于改进SSA算法优化极限学习机模型的土壤供肥量预测[J]. 中国农机化学报, 2023, 44(10): 174-184. |
LI J Z, LIU Q J, WANG Z Y. Prediction of soil fertilizer for optimizing extreme learning machine based on improved SSA algorithm[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(10): 174-184. | |
30 | ZHANG C Y, WANG S L, YU C M, et al. Improved particle swarm optimization-extreme learning machine modeling strategies for the accurate lithium-ion battery state of health estimation and high-adaptability remaining useful life prediction[J]. Journal of the Electrochemical Society, 2022, 169(8): 080520. |
31 | DUAN W X, SONG S X, XIAO F, et al. Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter[J]. Journal of Energy Storage, 2023, 65: 107322. |
32 | WANG Y J, HE Q, ZHANG D M, et al. Improving Li-ion battery health: Predicting remaining useful life using IWBOA-ELM algorithm[J]. Journal of Energy Storage, 2023, 72: 108547. |
33 | YANG Y X. A machine-learning prediction method of lithium-ion battery life based on charge process for different applications[J]. Applied Energy, 2021, 292: 116897. |
34 | WANG Y P, WANG H. Wavelet attention-powered neural network framework with hierarchical dynamic frequency learning for lithium-ion battery state of health prediction[J]. Journal of Energy Storage, 2023, 61: 106697. |
35 | SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: 100817. |
36 | GONG Q R, WANG P, CHENG Z. An encoder-decoder model based on deep learning for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2022, 46: 103804. |
37 | FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741. |
38 | YANG N K, SONG Z Y, HOFMANN H, et al. Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest[J]. Journal of Energy Storage, 2022, 48: 103857. |
39 | ANSARI S, AYOB A, HOSSAIN LIPU M S, et al. Particle swarm optimized data-driven model for remaining useful life prediction of lithium-ion batteries by systematic sampling[J]. Journal of Energy Storage, 2022, 56: 106050. |
40 | REN L, DONG J B, WANG X K, et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3478-3487. |
41 | LI P H, ZHANG Z J, XIONG Q Y, et al. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network[J]. Journal of Power Sources, 2020, 459: 228069. |
42 | WANG S L, FAN Y C, JIN S Y, et al. Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries [J]. Reliability Engineering & System Safety, 2023, 230: 108920. |
43 | XIN J Z, ZHOU C Y, JIANG Y, et al. A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM[J]. Measurement, 2023, 214: 112797. |
44 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. ArXiv e-Prints, 2017: arXiv: . |
45 | CHEN D Q, HONG W C, ZHOU X Z. Transformer network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Access, 1975, 10: 19621-19628. |
46 | PATIL M A, TAGADE P, HARIHARAN K S, et al. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation[J]. Applied Energy, 2015, 159: 285-297. |
47 | XUE Q, LI J Q, XU P P. Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life[J]. Energy, 2022, 261: 125210. |
48 | GOH H H, LAN Z T, ZHANG D D, et al. Estimation of the state of health (SOH) of batteries using discrete curvature feature extraction[J]. Journal of Energy Storage, 2022, 50: 104646. |
49 | MENG J H, CAI L, LUO G Z, et al. Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine[J]. Microelectronics Reliability, 2018, 88/89/90: 1216-1220. |
50 | 夏然, 苏春. 基于健康因子和混合Bi-LSTM-NAR的锂离子电池剩余寿命预测[J/OL]. 中国机械工程: 1-10[2024-01-01]. http://kns.cnki.net/kcms/detail/42.1294.TH.20231227.1121.002.html. |
51 | RICHARDSON R R, BIRKL C R, OSBORNE M A, et al. Gaussian process regression for in situ capacity estimation of lithium-ion batteries[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 127-138. |
52 | JIANG B, DAI H F, WEI X Z. Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition[J]. Applied Energy, 2020, 269: 115074. |
53 | TANG X P, ZOU C F, YAO K, et al. A fast estimation algorithm for lithium-ion battery state of health[J]. Journal of Power Sources, 2018, 396: 453-458. |
54 | LI X Y, WANG Z P, YAN J Y. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of Power Sources, 2019, 421: 56-67. |
55 | LI X Y, YUAN C G, WANG Z P. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression[J]. Energy, 2020, 203: 117852. |
56 | JIANG B, ZHU J G, WANG X Y, et al. A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries[J]. Applied Energy, 2022, 322: 119502. |
57 | GASPER P, SCHIEK A, SMITH K, et al. Predicting battery capacity from impedance at varying temperature and state of charge using machine learning[J]. Cell Reports Physical Science, 2022, 3: 101184. |
58 | FARAJI-NIRI M, RASHID M, SANSOM J, et al. Accelerated state of health estimation of second life lithium-ion batteries via electrochemical impedance spectroscopy tests and machine learning techniques[J]. Journal of Energy Storage, 2023, 58: 106295. |
59 | ZHAO Q, QIN X L, ZHAO H B, et al. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J]. Microelectronics Reliability, 2018, 85: 99-108. |
60 | DENG Z W, HU X S, LIN X K, et al. General discharge voltage information enabled health evaluation for lithium-ion batteries[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(3): 1295-1306. |
61 | JIA J F, LIANG J Y, SHI Y H, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators[J]. Energies, 2020, 13(2): 375. |
62 | HU X S, CHE Y H, LIN X K, et al. Health prognosis for electric vehicle battery packs: A data-driven approach[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2622-2632. |
63 | PRADYUMNA T K, CHO K, KIM M, et al. Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra[J]. Journal of Power Electronics, 2022, 22(5): 850-858. |
64 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. |
65 | ZHANG L, WANG W, YU H, et al. Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep learning model[J]. iScience, 2022, 25(12): 105638. |
66 | YANG X L, CHEN Y J, LI B, et al. Battery states online estimation based on exponential decay particle swarm optimization and proportional-integral observer with a hybrid battery model[J]. Energy, 2020, 191: 116509. |
67 | XU Z C, WANG J, LUND P D, et al. Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model[J]. Energy, 2022, 240: 122815. |
68 | ZHANG Y, CHEN L, LI Y, et al. A hybrid approach for remaining useful life prediction of lithium-ion battery with adaptive levy flight optimized particle filter and long short-term memory network[J]. Journal of Energy Storage, 2021, 44: 103245. |
69 | XUE Z W, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression[J]. Neurocomputing, 2020, 376(C): 95-102. |
70 | CHANG Y, FANG H J, ZHANG Y. A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery[J]. Applied Energy, 2017, 206: 1564-1578. |
71 | LI X Y, ZHANG L, WANG Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage, 2019, 21: 510-518. |
72 | MA G J, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]. Applied Energy, 2019, 253: 113626. |
73 | LI X, MA Y, ZHU J J. An online dual filters RUL prediction method of lithium-ion battery based on unscented particle filter and least squares support vector machine[J]. Measurement, 2021, 184: 109935. |
74 | LIAO L X, KÖTTIG F. A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction[J]. Applied Soft Computing, 2016, 44(C): 191-199. |
75 | YAO F, HE W X, WU Y X, et al. Remaining useful life prediction of lithium-ion batteries using a hybrid model[J]. Energy, 2022, 248: 123622. |
76 | YUAN J, QIN Z L, HUANG H K, et al. State of health estimation and remaining useful life prediction for a lithium-ion battery with a two-layer stacking regressor[J]. Energies, 2023, 16(5): 2313. |
77 | MA G J, WANG Z D, LIU W B, et al. A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries[J]. Knowledge-Based Systems, 2023, 259: 110012. |
78 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. |
79 | LIU H H, LI Y M, LUO L J, et al. A lithium-ion battery capacity and RUL prediction fusion method based on decomposition strategy and GRU[J]. Batteries, 2023, 9(6): 323. |
80 | LI H, FU L J, ZHANG Y. A novel hybrid data-driven method based on uncertainty quantification to predict the remaining useful life of lithium battery[J]. Journal of Energy Storage, 2022, 52: 104984. |
81 | WU J J, KONG L G, CHENG Z, et al. RUL prediction for lithium batteries using a novel ensemble learning method[J]. Energy Reports, 2022, 8: 313-326. |
[1] | 韩亚露, 陈奕戈, 邸会芳, 林杰欢, 王振兵, 张扬, 苏方远, 陈成猛. 锂离子电池不同服役工况下失效研究进展[J]. 储能科学与技术, 2024, 13(4): 1338-1349. |
[2] | 袁悦博, 王贺武, 孔祥栋, 蒲明伟, 孙玉坤, 韩雪冰, 欧阳明高. 金属异物缺陷演化特性及其对产线 K 值的影响机制[J]. 储能科学与技术, 2024, 13(4): 1197-1204. |
[3] | 李革, 孔祥栋, 孙跃东, 陈飞, 袁悦博, 韩雪冰, 郑岳久. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196. |
[4] | 刘淳正, 来沛霈, 孙卓, 聂耳, 张哲娟. 构造凹陷的硅碳颗粒提高锂离子电池负极电化学性能[J]. 储能科学与技术, 2024, 13(4): 1302-1309. |
[5] | 杨家沐, 陈育新, 练成, 徐至, 刘洪来. 电极浆料涂布模头流场分析与结构优化[J]. 储能科学与技术, 2024, 13(4): 1109-1117. |
[6] | 王玉婷, 李秋桐, 胡一鸣, 郭新. 锂离子电池内部信号监测技术概述[J]. 储能科学与技术, 2024, 13(4): 1253-1265. |
[7] | 孙明明. 有机无机复合锂离子电池固态电解质专利分析[J]. 储能科学与技术, 2024, 13(3): 1096-1105. |
[8] | 武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. |
[9] | 申小雨, 尹丛勃. 基于卷积Fastformer的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(3): 990-999. |
[10] | 刘佳, 马志强, 刘广忱, 高俊东, 李宏勋. 多尺度分解下GRU-TCN集成的动力电池剩余使用寿命预测方法[J]. 储能科学与技术, 2024, 13(3): 1009-1018. |
[11] | 胡大林, 任潘利, 张昌明, 杨明阳, 卢周广. Al-Y-Zr原位共掺杂提高4.53 V钴酸锂正极材料的循环性能[J]. 储能科学与技术, 2024, 13(3): 742-748. |
[12] | 张稚国, 李华清, 王莉, 何向明. 锂离子电池塑料-金属复合集流体的特性及制备研究进展[J]. 储能科学与技术, 2024, 13(3): 749-758. |
[13] | 刘剑, 于立博, 吴振兴, 牟介刚. 基于风冷的锂离子电池充放电设备热特性影响研究[J]. 储能科学与技术, 2024, 13(3): 914-923. |
[14] | 李校磊, 高健, 周伟东, 李泓. COMSOL Multiphysics在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(2): 546-567. |
[15] | 彭可, 张志成, 胡有章, 张旭辉, 周稼辉, 李彬. 基于有限元的热力耦合场匣钵运动分析与优化[J]. 储能科学与技术, 2024, 13(2): 634-642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||