1 |
YU H, CAO Y, CHEN L, et al. Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries[J].Nature Communications, 2021, 12(1): 4564.
|
2 |
LIU Y, MENG X, SHI Y, et al. Long-life quasi-solid-state anode-free batteries enabled by Li compensation coupled interface engineering[J]. Advanced Materials, 2023, 35(42): 2305386.
|
3 |
LI W, SONG B, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059.
|
4 |
冯晓晗, 孙杰, 何健豪, 魏义华, 周成冈, 孙睿敏. 磷酸铁锂正极材料改性研究进展[J]. 储能科学与技术, 2022, 11(2): 467-486.
|
|
FENG X H, SUN J, HE J H, WEI Y H, ZHOU C G, SUN R M. Research progress in LiFePO4 cathode material modification[J]. Energy Storage Science and Technology, 2022, 11(2): 467-486.
|
5 |
ZHU H, WANG Z, CHEN L, et al. Strain engineering of Ni-rich cathode enables exceptional cyclability in pouch-type full cells[J]. Advanced Materials, 2022, 35(9): 2209357.
|
6 |
YU H, ZHU H, JIANG H, et al. Restraining the escape of lattice oxygen enables superior cyclic performance towards high-voltage ni-rich cathodes[J]. National Science Review, 2023, 10(1): nwac166H.
|
7 |
ZHANG H, HE X, CHEN Z, et al. Single-crystalline Ni-rich LiNixMnyCo1- x- yO2 cathode materials: A perspective[J]. Advanced Energy Materials, 2022, 12(45): 2202022.
|
8 |
ZENG X, ZHAN C, LU J, et al. Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries[J]. Chem, 2018, 4(4): 690-704.
|
9 |
李淼, 于永利, 吴剑扬, 雷敏, 周恒辉. 高能量密度磷酸铁锂正极设计[J]. 储能科学与技术, 2023, 12(7): 2045-2058.
|
|
LI M, YU Y L, WU J Y, LEI M, ZHOU H H. Design of high-energy-density LiFePO4 cathode materials[J]. Energy Storage Science and Technology, 2023, 12(7): 2045-2058.
|
10 |
CHEN Y, ZENG G, ZHANG B, et al. From Li to Na: Exploratory analysis of Fe-based phosphates polyanion-type cathode materials by Mn substitution[J]. Small, 2023: 2303929.
|
11 |
ZHU C, WU Z, XIE J, et al. Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode[J]. Journal of Materials Science & Technology, 2022, 125: 192-197.
|
12 |
LI S, ZHANG H, LIU Y, et al. Comprehensive understanding of structure transition in LiMnyFe1- yPO4 during delithiation/lithiation[J]. Advanced Functional Materials, 2023: 2310057.
|
13 |
YU M, LI J, NING X. Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon[J]. Electrochimica. Acta, 2021, 368: 137597.
|
14 |
LI S, MENG X, YI Q, et al. Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack[J]. Nano Energy, 2018, 52: 510-516.
|
15 |
YI T F, LI Y, FANG Z, et al. Improving the cycling stability and rate capability of LiMn0.5Fe0.5PO4/C nanorod as cathode materials by LiAlO2 modification[J]. Journal of Materiomics, 2020, 6(1): 33-44.
|
16 |
HUANG Q Y, WU Z, SU J, et al. Synthesis and electrochemical performance of Ti-Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries[J]. Ceramics International, 2016, 42(9): 11348-11354.
|
17 |
YANG L, DENG W, XU W, et al. Olivine LiMnxFe1- xPO4 cathode materials for lithium ion batteries: Restricted factors of rate performances[J]. Journal of Materials Chemistry A, 2021, 9(25): 14214-14232.
|
18 |
ZHANG X, HOU M, TAMIRATE AG, et al. Carbon coated nano-sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries[J]. Journal of Power Sources, 2020, 448: 227438.
|
19 |
WANG B, XU B, LIU T, et al. Mesoporous carbon-coated lifepo4nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries[J]. Nanoscale, 2014, 6(2): 986-995.
|
20 |
LEI Z, WANG J, YANG J, et al. Nano-/microhierarchical-structured LiMn0.5Fe0.5PO4 cathode material for advanced lithium ion battery[J]. ACS Applied Materials & Interfaces, 2017, 10(50): 43552-43560.
|
21 |
QIN L, LIU Y, ZHU S, et al. Formation and operating mechanisms of single-crystalline perovskite NaNbO3 nanocubes/few-layered Nb2CTx MXene hybrids towards Li-ion capacitors[J]. Journal of Materials Chemistry A, 2021, 9(36): 20405-20416.
|
22 |
ZENG T T, GAO P, ZHOU Z, et al. Superior electronic/ionic kinetics of LiMn0.8Fe0.2PO4@C nanoparticles cathode by doping strategy toward enhanced Li-ion storage[J]. Energy Storage Materials, 2024, 65, 103125.
|
23 |
JIN H, ZHANG J, QIN L, et al. Dual modification of olivine LiMn0.5Fe0.5PO4 cathodes with accelerated kinetics for high-rate lithium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2023, 62(2), 1029-1034.
|
24 |
XU X, WANG T, BI Y, et al. Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment. Journal of Power Sources, 2017, 341: 175-182.
|
25 |
YANG L, XIA Y, QIN L, et al. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery[J]. Journal of Power Sources, 2016, 304: 293-300.
|
26 |
YU H, YANG Z, ZHU H, et al. Nitrogen-doped carbon stabilized LiMn0.5Fe0.5PO4/rGO cathode materials for high-power Li-ion batteries[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1935-1940.
|
27 |
LIU X, ZHANG Y, MENG Y, et al. Influence mechanism of Mg2+ doping on electrochemical properties of LiFePO4 cathode materials[J]. ACS Applied Energy Materials, 2022, 5(7): 8452-8459.
|
28 |
YANG L, WANG Y, WU J, et al. Facile synthesis of micro-spherical LiMn0.7Fe0.3PO4/C cathodes with advanced cycle life and rate performance for lithium-ion battery[J]. Ceramics International, 2017, 43(6): 4821-4830.
|
29 |
LI J, XIANG M, WANG Y, et al. Effects of adhesives on the electrochemical performance of monodisperse LiMn0.8Fe0.2PO4/C microspheres as cathode materials for high power lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(17): 7952-7960.
|
30 |
CAI L, HAN Q, ZHU H, et al. Grain-boundary engineering of Ni-rich cathodes prolongs the cycle life of Li-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(15): 8352-8358.
|
31 |
LIANG W, JIN F, ZHAO Y, et al. Synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 materials for Li-ion batteries by microfluidic technology[J]. Chemical Engineering Journal, 2023, 464: 142656.
|
32 |
LIANG L, LI X, SU M, et al. Chemomechanically stable small single-crystal mo-doped LiNi0.6Co0.2Mn0.2O2 cathodes for practical 4.5 V-class pouch-type Li-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(11): e202216155.
|