储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1794-1806.doi: 10.19799/j.cnki.2095-4239.2023.0961
钟国彬1(), 姚鑫2, 刘永超2, 侯倩2, 项宏发2()
收稿日期:
2023-12-29
修回日期:
2024-03-09
出版日期:
2024-06-28
发布日期:
2024-06-26
通讯作者:
项宏发
E-mail:zhongguobin001@163.com;hfxiang@hfut.edu.cn
作者简介:
钟国彬(1984—),男,博士,教授级高工,从事电化学储能技术研究,E-mail:zhongguobin001@163.com;
基金资助:
Guobin ZHONG1(), Xin YAO2, Yongchao LIU2, Qian HOU2, Hongfa XIANG2()
Received:
2023-12-29
Revised:
2024-03-09
Online:
2024-06-28
Published:
2024-06-26
Contact:
Hongfa XIANG
E-mail:zhongguobin001@163.com;hfxiang@hfut.edu.cn
摘要:
隔膜作为锂电池的重要结构组成部分,起阻隔正负极接触、吸收并固定电解液、传递离子等关键作用。锂电池用商用隔膜面临高温热收缩等问题,影响电池的持久安全性。本文首先简要介绍了锂离子电池隔膜在孔隙结构、电解液润湿性、结构/热/化学/电化学稳定性以及隔膜-电解液相互作用等方面的要求,并通过对近期相关文献的探讨,重点综述了耐高温聚合物隔膜的研究进展;重点分析了高耐热聚合物基隔膜、阻燃添加剂涂敷隔膜和聚合物基底复合等策略对于阻燃多功能复合隔膜的改善机制;对于复合隔膜的锂枝晶抑制策略,主要介绍了物理阻隔锂枝晶生长、均匀化锂沉积和调控锂离子迁移通量三种方法。综合分析表明,通过减薄聚烯烃隔膜同时引入高性能薄涂层、掺杂固态电解质、开发高耐热聚合物基底隔膜等策略,有望在实现高安全性的同时获得高离子电导率。
中图分类号:
钟国彬, 姚鑫, 刘永超, 侯倩, 项宏发. 锂离子电池高安全复合隔膜的挑战和未来展望[J]. 储能科学与技术, 2024, 13(6): 1794-1806.
Guobin ZHONG, Xin YAO, Yongchao LIU, Qian HOU, Hongfa XIANG. Challenges and prospects of high-safety composite separators for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1794-1806.
表1
LIBs隔膜的参数要求[13]"
序号 | 参数 | 要求 |
---|---|---|
1 | 孔隙率 | 30%~70% |
2 | 孔径大小 | < 1 μm |
3 | 厚度 | 在力学性能满足的情况尽可能小,< 40 μm |
4 | 渗透率 | < 8 (MacMullin =电解液离子电导率/隔膜浸润后离子电导率) |
5 | 机械强度 | 偏移 < 2% (1000 psi, 1000 psi = 6.895 MPa) |
6 | 穿刺强度 | > 300 g/mil (1 mil = 25.4 μm) |
7 | 热稳定性 | < 5% (100 ℃,热处理1 h) |
8 | 化学稳定性 | 不与电解液发生化学反应,耐强氧化、还原环境 |
9 | 透气率 | 200~800 s /100 mL |
10 | 吸液率 | 一般要求越高越好 |
11 | 拉伸强度 | 一般要求纵向强度达到100 MPa以上,横向强度不能太大 |
1 | XU J J, CAI X Y, CAI S M, et al. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): 12450. |
2 | 韩雨, 曹盛玲, 宁靖, 等. 聚合物改性锂金属电池界面策略研究综述[J]. 储能科学与技术, 2023, 12(8): 2491-2503. |
HAN Y, CAO S L, NING J, et al. Strategies for interfacial modification in lithium metal batteries with polymers[J]. Energy Storage Science and Technology, 2023, 12(8): 2491-2503. | |
3 | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
GAO Q X, ZHAO J T, LI G X. Research progress on fast-charging lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. | |
4 | WU S, ZHANG X, WANG R Z, et al. Progress and perspectives of liquid metal batteries[J]. Energy Storage Materials, 2023, 57: 205-227. |
5 | XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614: 694-700. |
6 | WANG J N, YANG K, SUN S Y, et al. Advances in thermal-related analysis techniques for solid-state lithium batteries[J]. InfoMat, 2023, 5(4): e12401. |
7 | 王怡, 陈学兵, 王愿习, 等. 储能锂离子电池多层级失效机理及分析技术综述[J]. 储能科学与技术, 2023, 12(7): 2079-2094. |
WANG Y, CHEN X B, WANG Y X, et al. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. | |
8 | YUN F L, LIU S Y, GAO M, et al. Investigation on step overcharge to self-heating behavior and mechanism analysis of lithium ion batteries[J]. Journal of Energy Chemistry, 2023, 79: 301-311. |
9 | OSMANI K, ALKHEDHER M, RAMADAN M, et al. Recent progress in the thermal management of lithium-ion batteries[J]. Journal of Cleaner Production, 2023, 389: 136024. |
10 | LIU Z F, JIANG Y J, HU Q M, et al. Safer lithium-ion batteries from the separator aspect: Development and future perspectives[J]. Energy & Environmental Materials, 2021, 4(3): 336-362. |
11 | 周伟东, 黄秋, 谢晓新, 等. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
ZHOU W D, HUANG Q, XIE X X, et al. Research progress of polymer electrolyte for solid state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. | |
12 | YANG Y F, WANG W K, MENG G L, et al. Function-directed design of battery separators based on microporous polyolefin membranes[J]. Journal of Materials Chemistry A, 2022, 10(27): 14137-14170. |
13 | SU M M, HUANG G, WANG S Q, et al. High safety separators for rechargeable lithium batteries[J]. Science China Chemistry, 2021, 64(7): 1131-1156. |
14 | 沈馨, 张睿, 赵辰孜, 等. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
SHEN X, ZHANG R, ZHAO C Z, et al. Recent advances in mechano-electrochemistry in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. | |
15 | SONG X H, YAO X, ZHANG F, et al. Nanofiber membrane coated with lithiophilic polydopamine for lithium metal batteries[J]. Journal of Membrane Science, 2023, 685: 121951. |
16 | LI J Y, ZHANG Y Z, SHANG R, et al. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability[J]. Energy Storage Materials, 2021, 43: 143-157. |
17 | MA J, WU Y Y, JIANG H, et al. In situ directional polymerization of poly(1,3-dioxolane) solid electrolyte induced by cellulose paper-based composite separator for lithium metal batteries[J]. Energy & Environmental Materials, 2023, 6(3): e12370. |
18 | LI J H, CAI Y F, WU H M, et al. Polymers in lithium-ion and lithium metal batteries[J]. Advanced Energy Materials, 2021, 11(15): 2003239. |
19 | GEBERT F, KNOTT J, GORKIN R III, et al. Polymer electrolytes for sodium-ion batteries[J]. Energy Storage Materials, 2021, 36: 10-30. |
20 | LIN W X, WANG F, WANG H B, et al. Thermal-stable separators: Design principles and strategies towards safe lithium-ion battery operations[J]. ChemSusChem, 2022, 15(24): e202201464. |
21 | 邵素霞, 朱振东, 彭文, 等. 充放电过程液相锂离子浓度变化及机理[J]. 储能科学与技术, 2021, 10(3): 1187-1195. |
SHAO S X, ZHU Z D, PENG W, et al. Variation and mechanism of lithium-ion concentration in the liquid phase during charging and discharging cycles[J]. Energy Storage Science and Technology, 2021, 10(3): 1187-1195. | |
22 | 刘如亮, 高兴远, 尹伟, 等. PVDF-HFP基凝胶固态聚合物电解质的合成与锂离子电池性能[J]. 储能科学与技术, 2021, 10(6): 2077-2081. |
LIU R L, GAO X Y, YIN W, et al. Synthesis of PVDF-HFP based gel polymer electrolyte and study of lithium ion battery performance[J]. Energy Storage Science and Technology, 2021, 10(6): 2077-2081. | |
23 | YUAN B, WEN K, CHEN D, et al. Composite separators for robust high rate lithium ion batteries[J]. Advanced Functional Materials, 2021, 31(32): 2101420. |
24 | GAO X X, SHENG L, YANG L, et al. High-stability core-shell structured PAN/PVDF nanofiber separator with excellent lithium-ion transport property for lithium-based battery[J]. Journal of Colloid and Interface Science, 2023, 636: 317-327. |
25 | WU D Y, DONG N X, WANG R H, et al. In situ construction of high-safety and non-flammable polyimide "ceramic" lithium-ion battery separator via SiO2 nano-encapsulation[J]. Chemical Engineering Journal, 2021, 420: 129992. |
26 | RYOU M H, LEE Y M, PARK J K, et al. Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries[J]. Advanced Materials, 2011, 23(27): 3066-3070. |
27 | 安平. 聚酰亚胺锂离子电池隔膜的制备及其性能研究[D]. 西安: 陕西科技大学, 2015. |
AN P. Preparation and properties of polyimide lithium ion battery separator[D]. Xi'an: Shaanxi University of Science & Technology, 2015. | |
28 | KONG L Y, YAN Y R, QIU Z M, et al. Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries[J]. Journal of Membrane Science, 2018, 549: 321-331. |
29 | WANG Y, YIN C Q, SONG Z L, et al. Application of PVDF organic particles coating on polyethylene separator for lithium ion batteries[J]. Materials, 2019, 12(19): 3125. |
30 | MOHAMMAD I, BARTER L D J, STOLOJAN V, et al. Electrospun polar-nanofiber PVDF separator for lithium-sulfur batteries with enhanced charge storage capacity and cycling durability[J]. Energy Advances, 2024, 3(3): 625-635. |
31 | RYU J, HAN D Y, HONG D, et al. A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries[J]. Energy Storage Materials, 2022, 45: 941-951. |
32 | RYOU M H, LEE D J, LEE J N, et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators[J]. Advanced Energy Materials, 2012, 2(6): 645-650. |
33 | LI M N, ZHANG Z J, YIN Y T, et al. Novel polyimide separator prepared with two porogens for safe lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3610-3616. |
34 | KANG S H, JANG J K, JEONG H Y, et al. Polyacrylonitrile/phosphazene composite-based heat-resistant and flame-retardant separators for safe lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(2): 2452-2461. |
35 | MENG F H, GAO J H, ZHANG M D, et al. Enhanced safety performance of automotive lithium-ion batteries with Al2O3-coated non-woven separator[J]. Batteries & Supercaps, 2021, 4(1): 146-151. |
36 | SHI K, XU Z J, ZHENG D W, et al. Sandwich-like solid composite electrolytes employed as bifunctional separators for safe lithium metal batteries with excellent cycling performance[J]. Journal of Materials Chemistry A, 2022, 10(9): 4660-4670. |
37 | CHOU L Y, YE Y S, LEE H K, et al. Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries[J]. Nano Letters, 2021, 21(5): 2074-2080. |
38 | LIAO C, MU X, HAN L, et al. A flame-retardant, high ionic-conductivity and eco-friendly separator prepared by papermaking method for high-performance and superior safety lithium-ion batteries[J]. Energy Storage Materials, 2022, 48: 123-132. |
39 | 刘卿. 溴系阻燃剂应用情况分析及展望[J]. 天津化工, 2020, 34(4): 3-5. |
LIU Q. Application analysis and prospect of bromine flame retardants[J]. Tianjin Chemical Industry, 2020, 34(4): 3-5. | |
40 | 汤维, 钱立军, 邱勇, 等. 聚丙烯材料无卤阻燃改性研究进展[J]. 中国塑料, 2021, 35(1): 136-149. |
TANG W, QIAN L J, QIU Y, et al. Research progress in halogen-free flame retardant technology for polypropylene[J]. China Plastics, 2021, 35(1): 136-149. | |
41 | YEON D, LEE Y J, RYOU M H, et al. New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries[J]. Electrochimica Acta, 2015, 157: 282-289. |
42 | STALIN S, CHOUDHURY S, ZHANG K H, et al. Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries[J]. Chemistry of Materials, 2018, 30(6): 2058-2066. |
43 | YU B C, PARK K, JANG J H, et al. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium–sulfur battery[J]. ACS Energy Letters, 2016, 1(3): 633-637. |
44 | ZHAO Q N, WANG R H, HU X L, et al. Functionalized 12 µm polyethylene separator to realize dendrite-free lithium deposition toward highly stable lithium-metal batteries[J]. Advanced Science, 2022, 9(13): e2102215. |
45 | LIANG J, CHEN Q Y, LIAO X B, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(16): 6561-6566. |
46 | HAO X M, ZHU J, JIANG X, et al. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators[J]. Nano Letters, 2016, 16(5): 2981-2987. |
47 | GUO Y, WU Q, LIU L W, et al. Thermally conductive AlN-network shield for separators to achieve dendrite-free plating and fast Li-ion transport toward durable and high-rate lithium-metal anodes[J]. Advanced Science, 2022, 9(18): e2200411. |
48 | CHO J, SHIN W K, G KANNAN A, et al. Ultrathin coating of nitrogen and sulfur co-doped graphene nanosheets on polymer separator for suppressing dendritic lithium growth in lithium metal batteries[J]. ECS Meeting Abstracts, 2016, (2): 1028. |
49 | CHEN X, ZHANG R Y, ZHAO R R, et al. A "dendrite-eating" separator for high-areal-capacity lithium-metal batteries[J]. Energy Storage Materials, 2020, 31: 181-186. |
50 | JI Y P, YUAN B T, ZHANG J W, et al. A single-layer piezoelectric composite separator for durable operation of Li metal anode at high rates[J]. Energy & Environmental Materials, 2024, 7(1): 12510. |
51 | ZHANG Y C, WANG Z H, XIANG H F, et al. A thin inorganic composite separator for lithium-ion batteries[J]. Journal of Membrane Science, 2016, 509: 19-26. |
52 | YAN J, LIU F Q, GAO J, et al. Low-cost regulating lithium deposition behaviors by transition metal oxide coating on separator[J]. Advanced Functional Materials, 2021, 31(16): 2007255. |
53 | ZHANG X J, ZHOU L, HU K P, et al. Uniform lithium deposition regulated by lithiophilic Mo3N2/MoN heterojunction nanobelts interlayer for stable lithium metal batteries[J]. Chemical Engineering Journal, 2023, 476: 146612. |
54 | DING L Y, YUE X Y, ZHANG X H, et al. A polyimine aerogel separator with electron cloud design to boost Li-ion transport for stable Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(51): e2314264120. |
55 | JIANG Z Y, WANG S Q, CHEN X Z, et al. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries[J]. Advanced Materials, 2020, 32(6): 1906221. |
56 | WANG L J, WANG Z H, SUN Y, et al. Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator[J]. Journal of Membrane Science, 2019, 572: 512-519. |
57 | ZHONG G B, WANG Y, WANG C, et al. An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator[J]. Ionics, 2019, 25(6): 2677-2684. |
58 | YANG J L, WANG C Y, WANG C C, et al. Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes[J]. Journal of Materials Chemistry A, 2020, 8(10): 5095-5104. |
59 | TAN L W, SUN Y, WEI C L, et al. Design of robust, lithiophilic, and flexible inorganic-polymer protective layer by separator engineering enables dendrite-free lithium metal batteries with LiNi0.8Mn0.1Co0.1O2 cathode[J]. Small, 2021, 17(13): e2007717. |
60 | LIN G, JIA K, BAI Z X, et al. Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(47): 2207969. |
[1] | 李晨威, 徐世国, 余海峰, 于松民, 江浩. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. |
[2] | 孙琦, 彭豪, 孟庆国, 孔德凯, 冯睿. 极限工况下储能电池包热适应性[J]. 储能科学与技术, 2024, 13(6): 2039-2043. |
[3] | 张玉超, 张凤姣, 娄伟, 昝飞翔, 王琳玲, 盛安旭, 吴晓辉, 陈静. 废旧锂离子电池有价金属资源化利用的转化过程和潜在环境影响[J]. 储能科学与技术, 2024, 13(6): 1861-1870. |
[4] | 汤旭旭, 许铤, 储德韧. 镍钴锰三元锂离子电池不同电压下浮充失效机理及热安全研究[J]. 储能科学与技术, 2024, 13(6): 2044-2053. |
[5] | 唐梓巍, 师玉璞, 张雨禅, 周奕博, 杜慧玲. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. |
[6] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[7] | 廉高棨, 叶敏, 王桥, 李岩, 麻玉川, 孙乙丁, 杜鹏辉. 基于改进模型与优化自适应CKF的锂离子电池快速变温工况下的SOC估计[J]. 储能科学与技术, 2024, 13(5): 1667-1676. |
[8] | 吕兆财, 王玉西, 汪智涛, 孙晓辉, 李景康. 热辊压对锂离子电池正极极片性能的影响[J]. 储能科学与技术, 2024, 13(5): 1443-1450. |
[9] | 李润源, 郭傅傲, 赵钢超. 集装箱式锂离子电池储能系统消防安全早期预警方法[J]. 储能科学与技术, 2024, 13(5): 1595-1602. |
[10] | 何林, 刘江岩, 刘彬, 李夔宁, 代帅. 数据分布多样性对锂电池SOC预测的泛化影响[J]. 储能科学与技术, 2024, 13(5): 1677-1687. |
[11] | 韩亚露, 陈奕戈, 邸会芳, 林杰欢, 王振兵, 张扬, 苏方远, 陈成猛. 锂离子电池不同服役工况下失效研究进展[J]. 储能科学与技术, 2024, 13(4): 1338-1349. |
[12] | 袁悦博, 王贺武, 孔祥栋, 蒲明伟, 孙玉坤, 韩雪冰, 欧阳明高. 金属异物缺陷演化特性及其对产线 K 值的影响机制[J]. 储能科学与技术, 2024, 13(4): 1197-1204. |
[13] | 李革, 孔祥栋, 孙跃东, 陈飞, 袁悦博, 韩雪冰, 郑岳久. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196. |
[14] | 刘淳正, 来沛霈, 孙卓, 聂耳, 张哲娟. 构造凹陷的硅碳颗粒提高锂离子电池负极电化学性能[J]. 储能科学与技术, 2024, 13(4): 1302-1309. |
[15] | 李炳金, 韩晓霞, 张文杰, 曾伟国, 武晋德. 锂离子电池剩余使用寿命预测方法综述[J]. 储能科学与技术, 2024, 13(4): 1266-1276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||