储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1824-1834.doi: 10.19799/j.cnki.2095-4239.2024.0085

• 储能材料与器件 • 上一篇    下一篇

/-氯二次电池的最新进展——从材料构建到性能评估

杨建航1(), 冯文婷2, 韩俊伟2, 魏欣茹2, 马晨宇2, 毛常明1(), 智林杰2,3, 孔德斌2,3()   

  1. 1.青岛科技大学材料科学与工程学院,山东 青岛 266042
    2.中国石油大学(华东)高端化工与能源材料研究中心
    3.中国石油大学(华东)新能源学院,山东 青岛 266580
  • 收稿日期:2024-01-27 修回日期:2024-03-06 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 毛常明,孔德斌 E-mail:yjh2221040438@163.com;mcm@quest.edu.cn;kongdb@upc.edu.cn
  • 作者简介:杨建航(1999—),男,硕士研究生,研究方向为锂氯电池负极材料,E-mail:yjh2221040438@163.com
  • 基金资助:
    国家自然科学基金项目(52172040);国家自然科学基金项目(9237220021)

Recent advances in rechargeable Li/Na-Cl2 batteries: From material construction to performance evaluation

Jianhang YANG1(), Wenting FENG2, Junwei HAN2, Xinru WEI2, Chenyu MA2, Changming MAO1(), Linjie ZHI2,3, Debin KONG2,3()   

  1. 1.College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    2.Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China)
    3.College of New Energy, China University of Petroleum (East China), Qingdao 266580, Shandong, China
  • Received:2024-01-27 Revised:2024-03-06 Online:2024-06-28 Published:2024-06-26
  • Contact: Changming MAO, Debin KONG E-mail:yjh2221040438@163.com;mcm@quest.edu.cn;kongdb@upc.edu.cn

摘要:

传统锂离子电池的能量密度已难以满足日益增长的更高能量密度的需求。开发新型高能量密度二次电池是最为有效的一个策略。近期,基于商用一次锂-亚硫酰氯锂电池衍生而来的锂/钠-氯二次电池因其高能量密度而备受关注,成为替代传统锂离子电池的有力竞争者。本文围绕锂/钠-氯二次电池的最新研究进展,综述了正极载体、负极及电解液等关键组分构建研究及其对电化学性能的影响。在正极载体方面,系统阐述了碳材料、共轭框架聚合物等载体设计对锂/钠-氯二次电池首次放电容量、可逆容量、倍率性能和温度的影响;在电解液方面,详细分析了针对反应机理、中间相产物和电解液腐蚀问题的解决策略;并简要介绍了适用于锂/钠-氯二次电池的新型合金负极。基于正极载体的理性设计与电解液系统优化,锂/钠-氯二次电池在新型二次电池领域已初现峥嵘,循环寿命可达500圈,尤其是在极端服役环境中表现优异(可在-80 ℃工作,电流密度最大可达16 A/g)。然而,氯物种转化动力学速率慢、活性氯物种利用率低以及氯物种对负极等的腐蚀难题仍然是限制其性能进一步提升的瓶颈,也是未来亟待解决的挑战所在。

关键词: 锂/钠-氯二次电池, 高能量密度, 电极材料设计, 结构性能关系, 电化学反应动力学

Abstract:

The energy density of traditional lithium-ion batteries is increasingly unable to meet the demand for higher energy densities. Developing new high-energy-density secondary batteries is one way to address this challenge. Rechargeable Li/Na-Cl2 batteries, derived from commercial primary lithium thionyl chloride batteries, have garnered significant attention due to their high energy density, positioning them as strong contenders to replace traditional lithium-ion batteries. This review examines the recent literature on rechargeable Li/Na-Cl2 batteries, focusing on the design principles of materials and the assessment and prediction of electrochemical performance. For cathode carriers, we systematically discuss the impact of carbon materials, conjugated framework polymers, and other cathode designs on the first discharge capacity, reversible capacity, rate performance, and operational temperature of these batteries. In terms of electrolytes, we analyze solution strategies concerning the reaction mechanism, intermediate-phase products, and corrosion. Additionally, we briefly introduce new alloy anodes that are suitable for rechargeable Li/Na-Cl2 batteries. These batteries demonstrate promising performance in the realm of new secondary batteries, thanks to the rational design of cathode carriers and electrolyte system optimization, achieving a cycle life of up to 500 cycles, particularly under extreme operating conditions (operating at -80 ℃ with a current density of 16 A/g). However, challenges such as the slow conversion kinetics of chlorine species, low utilization rate of active chlorine species, and corrosion by chlorine species at the anode remain, posing significant barriers to further improvements.

Key words: rechargeable Li/Na-Cl2 battery, high energy density, electrode materials design, structure-property relationships, electrochemical reaction kinetics

中图分类号: