1 |
SONG Y Z, LIU X, REN D S, et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries[J]. Advanced Materials, 2022, 34(2): e2106335.
|
2 |
LIU W, ZONG K, GHANI U, et al. Ternary lithium nickel boride with 1D rapid-ion-diffusion channels as an anode for use in lithium-ion batteries[J]. Small, 2023: e2309918.
|
3 |
YOU H Z, ZHU J G, WANG X Y, et al. Nonlinear health evaluation for lithium-ion battery within full-lifespan[J]. Journal of Energy Chemistry, 2022, 72: 333-341.
|
4 |
PAREKH M H, PALANISAMY M, POL V G. Reserve lithium-ion batteries: Deciphering in situ lithiation of lithium-ion free vanadium pentoxide cathode with graphitic anode[J]. Carbon, 2023, 203: 561-570.
|
5 |
SONG K, AGYEMAN D A, PARK M, et al. High-energy-density metal-oxygen batteries: Lithium-oxygen batteries vs sodium-oxygen batteries[J]. Advanced Materials, 2017, 29(48): 1606572.
|
6 |
SONG Y Z, WANG X Q, CUI H, et al. Probing the particle size dependence of nonhomogeneous degradation in nickel-rich cathodes for high-energy lithium-ion batteries[J]. eTransportation, 2023, 16: 100223.
|
7 |
LI Z N, SAMI I, YANG J, et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries[J]. Nature Energy, 2023, 8: 84-93.
|
8 |
LI Z J, YANG J H, ZHOU Z F, et al. Growth confinement and ion transportation acceleration via an in situ formed Bi4Se3 layer for potassium ion battery anodes[J]. Applied Surface Science, 2023, 621: 156785.
|
9 |
QIN X L, ZHAO X, ZHANG G B, et al. Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile-water hybrid electrolyte[J]. ACS Nano, 2023, 17(13): 12040-12051.
|
10 |
TAO R Q, FU H W, GAO C T, et al. Tailoring interface to boost the high-performance aqueous Al ion batteries[J]. Advanced Functional Materials, 2023, 33(48): 2303072.
|
11 |
WANG J W, CHEN Y L, ZHAO Y F, et al. CO2 capture membrane for long-cycle lithium-air battery[J]. Molecules, 2023, 28(5): 2024.
|
12 |
WANG M, SUN W H, ZHANG K, et al. Synergy between the coordination and trace ionization of co-solvents enables reversible magnesium electroplating/stripping behavior[J]. Energy & Environmental Science, 2024, 17(2): 630-641.
|
13 |
ZHOU W, ZENG G L, JIN H T, et al. Bio-template synthesis of V2O3@Carbonized Dictyophora composites for advanced aqueous zinc-ion batteries[J]. Molecules, 2023, 28(5): 2147.
|
14 |
张鼎, 叶子贤, 刘镇铭, 等. 钠离子电池黑磷基负极材料研究进展[J]. 储能科学与技术, 2023, 12(8): 2482-2490.
|
|
ZHANG D, YE Z X, LIU Z M, et al. Research progress of black phosphorus-based anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490.
|
15 |
ZHU G Z, TIAN X, TAI H C, et al. Rechargeable Na/Cl2 and Li/Cl2 batteries[J]. Nature, 2021, 596: 525-530.
|
16 |
CHEN S Y, XU Z W, LI M F, et al. Tailoring fluorine-substituted cobalt phthalocyanine/activated carbon nanocomposites for stable and long-life Li/SOCl2 batteries[J]. Journal of Electroanalytical Chemistry, 2023, 935: 117345.
|
17 |
LI X, HUANG X Y, GAO R M, et al. Improved performance of Li/SOCl2 batteries using binuclear metal azaphthalocyanines as electrocatalysts[J]. Electrochimica Acta, 2016, 222: 203-211.
|
18 |
XIA M T, FENG Y H, WEI J M, et al. A rechargeable K/Br battery[J]. Advanced Functional Materials, 2022, 32(38): 2205879.
|
19 |
XU Q C, GENG S T, YUAN B, et al. A low-cost and recyclable Mg/SOCl2 primary battery via synergistic solvation and kinetics regulation[J]. Advanced Functional Materials, 2023, 33(5): 2210343.
|
20 |
ZHANG R L, WANG R Q, LUO K, et al. Multi-walled carbon nanotubes chemically modified by cobalt tetraaminophthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery[J]. Journal of the Electrochemical Society, 2014, 161(14): H941-H949.
|
21 |
SU X Q, SUN W J, LI J, et al. The use of porphyrins as electrocatalyst in lithium/thionyl chloride (Li/SOCl2) battery[J]. ECS Electrochemistry Letters, 2014, 3(6): A39-A40.
|
22 |
WEI J H, GAO X T, TAN S P, et al. Acetylene black loaded on graphene as a cathode material for boosting the discharging performance of Li/SOCl2 battery[J]. International Journal of Electrochemical Science, 2017, 12(2): 898-905.
|
23 |
LIANG P, ZHU G Z, HUANG C L, et al. Rechargeable Li/Cl2 battery down to -80 ℃[J]. Advanced Materials, 2024, 36(7): 2307192.
|
24 |
SHEN F, WANG S F, GAO Y. Making SOCl2 rechargeable[J]. Joule, 2021, 5(11): 2766-2767.
|
25 |
黎红, 杨林億. 锂/亚硫酰氯电池的发展现状[J]. 船电技术, 2009, 29(8): 57-60.
|
|
LI H, YANG L Y. Development states of lithium/thionyl chloride battery[J]. Marine Electric & Electronic Engineering, 2009, 29(8): 57-60.
|
26 |
ZHU G Z, LIANG P, HUANG C L, et al. Shedding light on rechargeable Na/Cl2 battery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(39): e2310903120.
|
27 |
ZHU G Z, LIANG P, HUANG C L, et al. High-capacity rechargeable Li/Cl2 batteries with graphite positive electrodes[J]. Journal of the American Chemical Society, 2022, 144(49): 22505-22513.
|
28 |
MA C Y, FENG W T, KONG D B, et al. Vertical-channel cathode host enables rapid deposition kinetics toward high-areal-capacity sodium-chlorine batteries[J]. Small, 2024: 2310978.
|
29 |
XIANG L X, XU Q C, ZHANG H, et al. Ultrahigh-rate Na/Cl2 batteries through improved electron and ion transport by heteroatom-doped bicontinuous-structured carbon[J]. Angewandte Chemie International Edition, 2023, 62(47): 2312001.
|
30 |
XU Y, JIAO L, MA J L, et al. Metal-organic frameworks for nanoconfinement of chlorine in rechargeable lithium-chlorine batteries[J]. Joule, 2023, 7(3): 515-528.
|
31 |
XU Y, WANG M M, SAJID M, et al. Organocatalytic lithium chloride oxidation by covalent organic frameworks for rechargeable lithium-chlorine batteries[J]. Angewandte Chemie (International Ed in English), 2024, 63(7): e202315931.
|
32 |
XU Y, ZHANG S X, WANG M M, et al. Enrichment of chlorine in porous organic nanocages for high-performance rechargeable lithium-chlorine batteries[J]. Journal of the American Chemical Society, 2023, 145(50): 27877-27885.
|
33 |
CHEN G D, LI W D, DU X F, et al. Transforming a primary Li-SOCl2 battery into a high-power rechargeable system via molecular catalysis[J]. Journal of the American Chemical Society, 2023, 145(40): 22158-22167.
|
34 |
YUAN B, WU L, GENG S T, et al. Unlocking reversible silicon redox for high-performing chlorine batteries[J]. Angewandte Chemie International Edition, 2023, 62(37): 2306789.
|
35 |
LI P, LI X L, GUO Y, et al. Development of an energy-dense and high-power Li-Cl2battery using reversible interhalogen bonds[J]. Chem, 2024, 10(1): 352-364.
|