储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1940-1962.doi: 10.19799/j.cnki.2095-4239.2024.0057
韩汶昕1,2(), 张雪辉1,2(), 许剑3, 傅力宏1, 蒋鑫1,4, 郭文宾1,2, 谢宇超1,2, 陈海生1,2
收稿日期:
2024-01-17
修回日期:
2024-03-03
出版日期:
2024-06-28
发布日期:
2024-06-26
通讯作者:
张雪辉
E-mail:hanwenxin@iet.cn;zhangxuehui@iet.cn
作者简介:
韩汶昕(1999—),男,硕士研究生,压缩空气储能系统叶轮机械气动热力学,E-mail:hanwenxin@iet.cn;
基金资助:
Wenxin HAN1,2(), Xuehui ZHANG1,2(), Jian XU3, Xin JIANG1, Lihong FU1,4, Wenbin GUO1,2, Haisheng CHEN1,2
Received:
2024-01-17
Revised:
2024-03-03
Online:
2024-06-28
Published:
2024-06-26
Contact:
Xuehui ZHANG
E-mail:hanwenxin@iet.cn;zhangxuehui@iet.cn
摘要:
压缩空气储能被视为最具发展潜力的物理储能技术,作为其核心部件,压气机的性能表现在较大程度上决定着储能系统的经济性和效率。叶顶间隙流动因其复杂的三维流动特性,对压气机内部流场结构变化存在重要作用,是影响整机性能的关键因素。文章依照叶顶结构特点分类总结了带冠、无冠轴流压气机和开式/半开式、闭式离心压气机叶顶间隙流动产生的机理,根据压气机流动特性,进一步综述国内外压气机叶顶间隙流动的研究进展,形成以下结论:对于无冠轴流压气机,非定常叶顶间隙流动与失速、叶片噪声及振动问题密切相关,需扩充研究成果以优化叶顶设计;带冠轴流压气机缺乏实验和数据支撑,流动控制手段单一,可尝试跨领域应用控制技术;离心压气机叶顶间隙流动研究仍需探索变间隙特性和周向不均匀性对流动结构的影响,并提升应对流场变化的能力。未来研究可着重于高精度数值模拟方法的应用推广、跨领域控制技术的尝试和复合结构的探索。
中图分类号:
韩汶昕, 张雪辉, 许剑, 傅力宏, 蒋鑫, 郭文宾, 谢宇超, 陈海生. 压气机叶顶间隙流动与控制研究进展[J]. 储能科学与技术, 2024, 13(6): 1940-1962.
Wenxin HAN, Xuehui ZHANG, Jian XU, Xin JIANG, Lihong FU, Wenbin GUO, Haisheng CHEN. Research progress on flow and control of compressor tip clearance[J]. Energy Storage Science and Technology, 2024, 13(6): 1940-1962.
1 | 王凯轩, 左志涛, 梁奇, 等. 离心式压缩机性能预测方法综述[J]. 储能科学与技术, 2023, 12(11): 3435-3444. |
WANG K X, ZUO Z T, LIANG Q, et al. Performance prediction methods for centrifugal compressors: A review[J]. Energy Storage Science and Technology, 2023, 12(11): 3435-3444. | |
2 | DENTON J D. The 1993 IGTI scholar lecture: Loss mechanisms in turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656. |
3 | 钟兢军, 韩少冰. 叶尖小翼控制压气机间隙流动的研究进展[J]. 推进技术, 2017, 38(10): 2200-2207. |
ZHONG J J, HAN S B. Research progress of compressor tip leakage flow control using blade tip winglet[J]. Journal of Propulsion Technology, 2017, 38(10): 2200-2207. | |
4 | 张健, 杜娟, 陈泽, 等. 高负荷压气机叶栅流动分离的主动控制方法综述[J]. 工程热物理学报, 2022, 43(5): 1190-1202. |
ZHANG J, DU J, CHEN Z, et al. Active flow control concepts of secondary flow on a highly loaded compressor cascade[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1190-1202. | |
5 | 白冰, 耿少娟, 李继超, 等. 间隙和转速对轴流压气机非定常叶顶泄漏流周向传播特性影响的实验研究[J]. 工程热物理学报, 2016, 37(7): 1404-1410. |
BAI B, GENG S J, LI J C, et al. Experimental study of effects of tip clearance and shaft speed on circumferential propagation characteristics of unsteady tip leakage flow[J]. Journal of Engineering Thermophysics, 2016, 37(7): 1404-1410. | |
6 | LAKSHMINARAYANA B, ZACCARIA M, MARATHE B. The structure of tip clearance flow in axial flow compressors[J]. Journal of Turbomachinery, 1995, 117(3): 336-347. |
7 | STAUTER R C. Measurement of the three-dimensional tip region flow field in an axial compressor[J]. Journal of Turbomachinery, 1993, 115(3): 468-476. |
8 | FOLEY A C, IVEY P C. Measurement of tip-clearance flow in a multistage, axial flow compressor[J]. Journal of Turbomachinery, 1996, 118(2): 211-217. |
9 | HOYING D A, TAN C S, VO H D, et al. Role of blade passage flow structurs in axial compressor rotating stall inception[J]. Journal of Turbomachinery, 1999, 121(4): 735-742. |
10 | CHEN X Y, KOPPE B, LANGE M, et al. Rotating instabilities in a low-speed single compressor rotor row with varying blade tip clearance[J]. Energies, 2021, 14(24): 8369. |
11 | KAMEIER F, NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery, 1997, 119(3): 460-471. |
12 | KAMEIER F, NEISE W. Rotating blade flow instability as a source of noise in axial turbomachines[J]. Journal of Sound and Vibration, 1997, 203(5): 833-853. |
13 | LEE C, CHUNG M K, KIM Y H. A prediction model for the vortex shedding noise from the wake of an airfoil or axial flow fan blades[J]. Journal of Sound Vibration, 1993, 164(2): 327-336. |
14 | MAILACH R, SAUER H, VOGELER K. The periodical interaction of the tip clearance flow in the blade rows of axial compressors[C]//Proceedings of ASME Turbo Expo 2001: Power for Land, Sea, and Air, June 4-7, 2001, New Orleans, Louisiana, USA. 2014 |
15 | BAE J W, BREUER K S, TAN C S. Active control of tip clearance flow in axial compressors[J]. Journal of Turbomachinery, 2005, 127(2): 352-362. |
16 | BAE J. Active control of tip clearance flow in axial compressors [D]. Massachusetts Institute of Technology, 2001. |
17 | ROGER M, MOREAU S, GUEDEL A. Broadband fan noise prediction using single-airfoil theory[J]. Noise Control Engineering Journal, 2006, 54(1): 5-14. |
18 | FUKANO T, JANG C M. Tip clearance noise of axial flow fans operating at design and off-design condition[J]. Journal of Sound Vibration, 2004, 275(3/4/5): 1027-1050. |
19 | FUKANO T, OGATA N, JANG C. Tip clearance noise of an axial fan operating under partial load condition; proceedings of the Fan noise 2003 international symposium, Senlis, F, 2003 [C]. |
20 | CLARK S T, KIELB R E, HALL K C. Developing a reduced-order model to understand non-synchronous vibration (NSV) in turbomachinery: Proceedings of the ASME turbo expo 2012: Turbine Technical Conference and Exposition, June 11-15, 2012[C]// Copenhagen, Denmark.2012 |
21 | VO H D. Role of tip clearance flow in rotating instabilities and nonsynchronous vibrations[J]. Journal of Propulsion and Power, 2010, 26: 556-561. |
22 | IM H, ZHA G C. Investigation of flow instability mechanism causing compressor rotor-blade nonsynchronous vibration[J]. AIAA Journal, 2014, 52(9): 2019-2031. |
23 | THOMASSIN J, VO H D, MUREITHI N W. The tip clearance flow resonance behind axial compressor nonsynchronous vibration[J]. Journal of Turbomachinery, 2011, 133(4): 1. |
24 | BESEM F M, KIELB R E. Influence of the tip clearance on a compressor blade aerodynamic damping[J]. Journal of Propulsion and Power, 2017, 33(1): 227-233. |
25 | FU Z Z, WANG Y R, JIANG X H, et al. Tip clearance effects on aero-elastic stability of axial compressor blades[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(1): 012501. |
26 | 董旭. 跨音风扇颤振及非定常流致振动机理研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2021. |
DONG X. Research on mechanism of transonic fan flutter and unsteady flow-induced vibration[D].Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2021. | |
27 | 董旭, 张燕峰, 张英杰, 等. 宽弦高速跨音风扇颤振特性研究[J]. 工程热物理学报, 2021, 42(1): 56-63. |
DONG X, ZHANG Y F, ZHANG Y J, et al. Investigation of flutter characteristics of a wide-chord high-speed transonic fan[J]. Journal of Engineering Thermophysics, 2021, 42(1): 56-63. | |
28 | KRO¨GER G, CORNELIUS C, NICKE E. Rotor casing contouring in high pressure stages of heavy duty gas turbine compressors with large tip clearance heights[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air, June 8-12, 2009, Orlando, Florida, USA. 2010: 215-225. |
29 | 孔晓治, 黄天硕, 刘育心, 等. 不同来流附面层厚度下容腔泄漏流对围带式静叶性能影响[J]. 航空动力学报, 2023, 38(1): 184-196. |
KONG X Z, HUANG T S, LIU Y X, et al. Influences of the cavity leakage flow on shrouded stator performance at different inlet boundary layer thicknesses[J]. Journal of Aerospace Power, 2023, 38(1): 184-196. | |
30 | WENNERSTROM A J. Compiler: US246080 [P/OL]. 2002-04-05 [2002-08-08]. |
31 | KIM S, KIM K, SON C. Three-dimensional unsteady simulation of a multistage axial compressor with labyrinth seals and its effects on overall performance and flow characteristics[J]. Aerospace Science and Technology, 2019, 86: 683-693. |
32 | LEE J, LIM S, SHIN H W, et al. Unsteady kinematics of multistage axial compressor shrouded cavity flows[C]//Proceedings of Global Power & Propulsion Society. GPPS, 2020. |
33 | HARVEY N W, RAMSDEN K. A computational study of a novel turbine rotor partial shroud[J]. Journal of Turbomachinery, 2001, 123(3): 534-543. |
34 | KUSTERER K, MORITZ N, BOHN D, et al. Reduction of tip clearance losses in an axial turbine by shaped design of the blade tip region[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air, May 14-17, 2007, Montreal, Canada. 2009: 541-551. |
35 | 韩少冰, 钟兢军. 叶尖小翼对跨声速压气机转子变工况性能的影响[J]. 航空动力学报, 2016, 31(3): 647-658. |
HAN S B, ZHONG J J. Influence of blade tip winglet on the off-design performance of a transonic compressor rotor[J]. Journal of Aerospace Power, 2016, 31(3): 647-658. | |
36 | 钟兢军, 吴宛洋, 王会社. 不同间隙下叶尖小翼对高亚声速扩压叶栅气动特性的影响研究[J]. 工程热物理学报, 2018, 39(4): 757-766. |
ZHONG J J, WU W Y, WANG H S. Effect of blade tip winglet on aerodynamic performance of high subsonic compressor cascade at different tip clearances[J]. Journal of Engineering Thermophysics, 2018, 39(4): 757-766. | |
37 | 钟兢军, 赵傲, 胡义, 等. 叶尖小翼对跨声速压气机级稳定工作裕度的影响[J]. 航空动力学报, 2024, 39(1): 115-126. |
ZHONG J J, ZHAO A, HU Y, et al. Effect of tip winglets on stable operating margin of transonic compressor stage[J]. Journal of Aerospace Power, 2024, 39(1): 115-126. | |
38 | DIAO L, GE F H, LIU Y, et al. Effect of tip winglet position on tip flow and noise of axial flow fan[J]. Heliyon, 2023, 9(8): e18483. |
39 | SAXENA V, NASIR H, EKKAD S V. Effect of blade tip geometry on tip flow and heat transfer for a blade in a low-speed cascade[J]. Journal of Turbomachinery, 2004, 126(1): 130-138. |
40 | MISCHO B, BEHR, T., ABHARI, R. S. Flow physics and profiling of recessed blade tips [J]. Journal of Turbomachinery, 2008,130(2): 021008 . |
41 | CIORCIARI R, LESSER A, BLAIM F, et al. Numerical investigation of tip clearance effects in an axial transonic compressor[J]. Journal of Thermal Science, 2012, 21(2): 109-119. |
42 | 高杰, 郑群. 叶顶凹槽形态对动叶气动性能的影响[J]. 航空学报, 2013, 34(2): 218-226. |
GAO J, ZHENG Q. Effect of squealer tip geometry on rotor blade aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 218-226. | |
43 | 孟庆鹤, 陈绍文, 李伟航, 等. 变工况下轴向非均匀凹槽叶顶的实验研究[J]. 工程热物理学报, 2018, 39(11): 2398-2403. |
MENG Q H, CHEN S W, LI W H, et al. Experimental study of axially non-uniform clearances with a squealer tip under design and off-design conditions[J]. Journal of Engineering Thermophysics, 2018, 39(11): 2398-2403. | |
44 | MA H W, ZHANG J, ZHANG J H, et al. Experimental study of effects of grooved tip clearances on the flow field in a compressor cascade passage[J]. Journal of Turbomachinery, 2012, 134(5): 1. |
45 | YAN S, CHU W L. Investigation on the influence of the structure parameters of blade tip recess on the performance of axial flow compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(16): 2436-2450. |
46 | 杨天康, 叶学民, 林卿, 等. 叶顶开槽—小翼结构对提升轴流风机性能影响的数值研究[J]. 热能动力工程, 2023, 38(7): 36-43. |
YANG T K, YE X M, LIN Q, et al. Numerical study on influence of blade tip slot-winglet pattern on performance improvement of an axial fan[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(7): 36-43. | |
47 | 楚武利, 卢新根, 吴艳辉. 带周向槽机匣处理的压气机内部流动数值模拟与试验[J]. 航空动力学报, 2006, 21(1): 100-105. |
CHU W L, LU X G, WU Y H. Numerical and experimental investigations of the flow in a compressor with circumferential grooves[J]. Journal of Aerospace Power, 2006, 21(1): 100-105. | |
48 | 卢新根, 楚武利, 朱俊强, 等. 轴流压气机机匣处理研究进展及评述[J]. 力学进展, 2006, 36(2): 222-232. |
LU X G, CHU W L, ZHU J Q, et al. A review of studies on casing treatment of axial-flow compressor[J]. Advances in Mechanics, 2006, 36(2): 222-232. | |
49 | CAO Z Y, YANG J, GAO X, et al. Pitchwise casing treatment for effects of grooves on dynamics of vortices and loss of blade tip region of a compressor cascade[J]. Aerospace Science and Technology, 2022, 131: 107977. |
50 | 徐文峰, 孙鹏, 杨国刚. 机匣仿生顶室对压气机间隙流动影响研究[J]. 工程热物理学报, 2021, 42(9): 2275-2283. |
XU W F, SUN P, YANG G G. Effect of casing with bionic tip chamber on compressor clearance flow[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2275-2283. | |
51 | SUTLIFF D L, JONES M G. Low-speed fan noise attenuation from a foam-metal liner[J]. Journal of Aircraft, 2009, 46(4): 1381-1394. |
52 | SUN D K, WANG Y Q, LI J, et al. Optimization of impedance boundary-controlled casing treatment on subsonic compressors[J]. Journal of Mechanical Science and Technology, 2023, 37(5): 2161-2169. |
53 | KHALEGHI H, SHEIKHSHAHROKH DEHKORDI M A, TOUSI A M. Role of tip injection in desensitizing the compressor to the tip clearance size[J]. Aerospace Science and Technology, 2016, 52: 10-17. |
54 | 王维, 楚武利, 张皓光. 基于试验设计的高负荷轴流压气机叶顶喷气参数化研究[J]. 推进技术, 2014, 35(2): 178-186. |
WANG W, CHU W L, ZHANG H G. Parametric study of tip injection in a high-loaded axial compressor based on design of experiment[J]. Journal of Propulsion Technology, 2014, 35(2): 178-186. | |
55 | 刘传乐, 楚武利, 王维. 叶顶喷气的喷嘴数目对轴流压气机稳定性影响的数值研究[J]. 推进技术, 2016, 37(10): 1860-1868. |
LIU C L, CHU W L, WANG W. Numerical investigation of injector numbers on stability of an axial compressor with discrete tip injection[J]. Journal of Propulsion Technology, 2016, 37(10): 1860-1868. | |
56 | LI J C, LIU Y, DU J, et al. Implementation of stability-enhancement with tip air injection in a multi-stage axial flow compressor[J]. Aerospace Science and Technology, 2021, 113: 106646. |
57 | 谢蓉, 于常贺, 于文, 等. 叶顶喷气对跨音速轴流压气机稳定裕度影响的数值研究[J]. 风机技术, 2023, 65(3): 1-7. |
XIE R, YU C H, YU W, et al. Numerical study of the effect of tip injection on the stability margin of transonic axial compressor[J]. Chinese Journal of Turbomachinery, 2023, 65(3): 1-7. | |
58 | 梁田, 刘波, 矫丽颖. 端壁抽吸对压气机叶栅间隙泄漏流控制策略的研究[J]. 推进技术, 2020, 41(5): 1031-1038. |
LIANG T, LIU B, JIAO L Y. Research on tip leakage flow control strategy for compressor cascade with casing aspiration[J]. Journal of Propulsion Technology, 2020, 41(5): 1031-1038. | |
59 | 张博涛, 刘波, 赵航. 叶顶抽吸对叶栅间隙泄漏流动的控制研究[J]. 推进技术, 2020, 41(8): 1701-1709. |
ZHANG B T, LIU B, ZHAO H. Effects of blade tip suction on cascade gap leakage flow[J]. Journal of Propulsion Technology, 2020, 41(8): 1701-1709. | |
60 | 张博涛, 刘波, 王何建. 端壁抽吸控制下攻角对压气机叶栅叶尖泄漏流动的影响[J]. 航空动力学报, 2020, 35(11): 2400-2412. |
ZHANG B T, LIU B, WANG H J. Impact of incidence angle on tip leakage flow control by endwall suction in a compressor cascade[J]. Journal of Aerospace Power, 2020, 35(11): 2400-2412. | |
61 | ZHANG B T, LIU B, WANG H J, et al. Effect of endwall suction on aerodynamic performance of compressor cascade with tip clearance at a large incidence angle[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2021, 235(6): 1332-1343. |
62 | 王广, 楚武利, 张皓光, 等. 端壁合成射流激励参数变化对跨声速轴流压气机性能的影响[J]. 西安交通大学学报, 2021, 55(5): 193-202. |
WANG G, CHU W L, ZHANG H G, et al. Effects of the endwall synthetic jet excitation parameters on performance of transonic axial flow compressor[J]. Journal of Xi'an Jiaotong University, 2021, 55(5): 193-202. | |
63 | WU Y, MA C D, TIAN S M, et al. Tip leakage vortex control in a low speed axial compressor using pulsed plasma actuation[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, June 13-17, 2016, Seoul, South Korea. 2016. |
64 | 傅力宏, 张雪辉, 陈海生, 等. 涡轮叶顶泄漏控制研究进展[J]. 工程热物理学报, 2023, 44(5): 1177-1198. |
FU L H, ZHANG X H, CHEN H S, et al. Research progress of turbine tip leakage control[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1177-1198. | |
65 | LEE J, LIM S, SHIN H W, et al. Periodic unsteady kinematics of hub flows in a shrouded multistage compressor[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(4): 041011. |
66 | LIANG D, GUI X M, JIN D H. Influence of seal cavity leakage flow on compressor performance investigated with a circumferentially averaged method[J]. Applied Sciences, 2021, 11(2): 780. |
67 | MA D Q, ZHANG Y Q, LI Z G, et al. Numerical investigations on the leakage flow characteristics of brush seal based on the 3D staggered tube bundle model[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition.2020.DOI:10.1115/GT2020-14590. |
68 | 冯毓钟, 赵欢, 孙丹, 等. 刷丝磨损对刷式密封泄漏流动特性影响数值与实验研究[J]. 航空动力学报, 2022, 37(6): 1234-1247. |
FENG Y Z, ZHAO H, SUN D, et al. Numerical and experimental research on influence of brush bristle wear on leakage and flow characteristics of brush seal[J]. Journal of Aerospace Power, 2022, 37(6): 1234-1247. | |
69 | CHANG Y, SUN B T, ZHANG L Z. Leakage performance predictions of a brush seal based on fluid-solid coupling method[J]. Science Progress, 2020, 103(1): 003685041989722. |
70 | LIU Y X, DONG W L, CHEW J, et al. Flow conditioning to control the effects of inlet swirl on brush seal performance in gas turbine engines[J]. Frontiers in Energy Research, 2022, 9: 815152. |
71 | KANG Y C, LIU M H, HU X P, et al. Theoretical and numerical investigation into brush seal hysteresis without pressure differential[J]. Advanced Composites Letters, 2019, 28: 096369351988538. |
72 | 彭能, 刘美红, 康宇驰, 等. 航空发动机刷式密封迟滞特性数值研究[J]. 兵器装备工程学报, 2023, 44(5): 172-179. |
PENG N, LIU M H, KANG Y C, et al. Numerical study on hysteresis characteristics of aero-engine brush seals[J]. Journal of Ordnance Equipment Engineering, 2023, 44(5): 172-179. | |
73 | 张元桥, 王妍, 晏鑫, 等. 刷式密封泄漏流动及传热特性的研究第一部分: 泄漏特性[J]. 工程热物理学报, 2017, 38(3): 482-489. |
ZHANG Y Q, WANG Y, YAN X, et al. Investigations on the leakage and heat transfer characteristics of brush seal part 1: Leakage characteristics[J]. Journal of Engineering Thermophysics, 2017, 38(3): 482-489. | |
74 | 赵会晶, 席光, 段亚飞, 等. 叶顶间隙对离心压气机性能和流动影响的实验研究[J]. 工程热物理学报, 2018, 39(7): 1453-1460. |
ZHAO H J, XI G, DUAN Y F, et al. Experimental study of tip clearance effects on performance and flow field of a centrifugal compressor[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1453-1460. | |
75 | FU L, YANG C, BAO W R, et al. Effect of circumferential static pressure nonuniformity caused by volute on tip leakage flow in a centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5134-5149. |
76 | 赵阳, 席光, 赵家毅, 等. 近失速工况离心压气机叶顶非定常流动的数值与实验研究[J]. 工程热物理学报, 2023, 44(5): 1199-1208. |
ZHAO Y, XI G, ZHAO J Y, et al. Numerical and experimental investigation of the unsteady tip clearance flow in a centrifugal compressor at near-stall condition[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1199-1208. | |
77 | JAATINEN-VÄRRI A, TIAINEN J, TURUNEN-SAARESTI T, et al. Centrifugal compressor tip clearance and impeller flow[J]. Journal of Mechanical Science and Technology, 2016, 30(11): 5029-5040. |
78 | 朱俊桦, 金永鑫, 吕世杰, et al. 半开式离心叶轮叶顶泄漏诱发流道流动堵塞特性研究 [J]. 中国农村水利水电: 1-15. |
ZHU Junhua, JIN Yongxin, LV Shijie, et al. Study on flow clogging characteristics induced by tip leakage of semi-open centrifugal impeller [J]. Water resources and hydropower in Rural China: 1-15. | |
79 | SATISH K V V N K, GUIDOTTI E, RUBINO D T, et al. Accuracy of centrifugal compressor stages performance prediction by means of high fidelity CFD and validation using advanced aerodynamic probe[C]//Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, June 3-7, 2013, San Antonio, Texas, USA. 2013 |
80 | GUIDOTTI E, NALDI G, TAPINASSI L, et al. Cavity flow modeling in an industrial centrifugal compressor stage at design and off-design conditions[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, June 11-15, 2012, Copenhagen, Denmark. 2013: 593-603. |
81 | GUIDOTTI E, TAPINASSI L, TONI L, et al. Experimental and numerical analysis of the flow field in the impeller of a centrifugal compressor stage at design point[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, June 6-10, 2011, Vancouver, British Columbia, Canada. 2012: 1845-1856. |
82 | MARECHALE R, JI M, CAVE M. Experimental and numerical investigation of labyrinth seal clearance impact on centrifugal impeller performance[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, June 15–19, 2015, Montreal, Quebec, Canada. 2015 |
83 | MISCHO B, RIBI B, SEEBASS-LINGGI C, et al. Influence of labyrinth seal leakage on centrifugal compressor performance[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air, June 8-12, 2009, Orlando, Florida, USA. 2010: 1283-1293. |
84 | 邵冬, 孙志刚, 谭春青, 等. 闭式叶轮轮盖空腔流场的数值研究[J]. 推进技术, 2017, 38(6): 1241-1248. |
SHAO D, SUN Z G, TAN C Q, et al. Numerical investigation on flow field of impeller front-side cavity for shrouded impeller[J]. Journal of Propulsion Technology, 2017, 38(6): 1241-1248. | |
85 | 唐永洪, 席光, 金志宏, 等. 离心压缩机密封及空腔流动的一维/三维耦合建模研究[J]. 航空动力学报, 2019, 34(9): 2038-2047. |
TANG Y H, XI G, JIN Z H, et al. Research on one-dimensional/three-dimensional coupled modeling for seal and cavity flow of centrifugal compressor[J]. Journal of Aerospace Power, 2019, 34(9): 2038-2047. | |
86 | 陈亚莉, 孙中国, 唐永洪, 等. 叶端加不同小翼对Krain离心叶轮气动性能影响的数值研究[J]. 西安交通大学学报, 2019, 53(11): 49-55. |
CHEN Y L, SUN Z G, TANG Y H, et al. Numerical investigation on the effect of blade tip winglets on the aerodynamic performance of krain centrifugal impeller[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 49-55. | |
87 | 韩少冰, 黄迪, 赵傲, 等. 低速离心压气机叶尖小翼设计与扩稳机理研究[J]. 推进技术, 2022, 43(4): 72-79. |
HAN S B, HUANG D, ZHAO A, et al. Design of blade tip winglet for low speed centrifugal compressor and mechanism of stability enhancement[J]. Journal of Propulsion Technology, 2022, 43(4): 72-79. | |
88 | PELTON R, JUNG S, ALLISON T, et al. Design of a wide-range centrifugal compressor stage for supercritical CO2 power cycles[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(9): 092602. |
89 | ZHANG H G, WANG H, LI Q, et al. Mechanism underlying the effect of self-circulating casings with different circumferential coverage ratios on the aerodynamic performance of a transonic centrifugal compressor[J]. Aerospace, 2023, 10(3): 312. |
90 | HIRANO T, OGAWA T, YASUI R, et al. Effect of double air injection on performance characteristics of centrifugal compressor[J]. Journal of Thermal Science, 2017, 26(1): 11-17. |
91 | HALAWA T. Optimization of the efficiency of stall control using air injection for centrifugal compressors—Additional findings[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(12): 124501. |
92 | HALAWA T, GADALA M S, ALQARADAWI M, et al. Optimization of the efficiency of stall control using air injection for centrifugal compressors[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(7): 072604. |
93 | JAHANI Z, KHALEGHI H, TABEJAMAAT S. Tip injection effects on a transonic centrifugal impeller with various tip clearances in the presence of inlet distortion[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(9): 397. |
94 | BASOL A M, ABHARI R S. Performance improvements of centrifugal compressors through shroud cavity leakage management[C]//Volume 6C: Turbomachinery. June 3-7, 2013. San Antonio, Texas, USA. American Society of Mechanical Engineers, 2013. |
95 | WEBER A, MORSBACH C, KÜGELER E, et al. Flow analysis of a high flowrate centrifugal compressor stage and comparison with test rig data[C]//Volume 2D: Turbomachinery. June 13-17, 2016. Seoul, South Korea. American Society of Mechanical Engineers, 2016. |
96 | QIAO B, JU Y P, ZHANG C H. Numerical investigation on labyrinth seal leakage flow and its effects on aerodynamic performance for a multistage centrifugal compressor[J]. Journal of Fluids Engineering, 2019, 141(7): 071107. |
97 | OSCARSON R P, WRIGHT D L. Experimental evaluation of a honeycomb rotor shroud configuration to improve the stall margin of a 0.5 hub-tip ratio single-stage compressor. Volume 2-Data supplement[M]. Work of the US Gov. Public Use Permitted, 1970. |
98 | 高庆, 李军. 涡轮蜂窝面径向轮缘密封封严性能的数值研究[J]. 推进技术, 2016, 37(5): 937-944. |
GAO Q, LI J. Numerical investigations on sealing performance of turbine honeycomb radial rim seal[J]. Journal of Propulsion Technology, 2016, 37(5): 937-944. | |
99 | 付云峰, 宋彦萍, 陈聪, 等. 机匣与叶顶蜂窝密封对涡轮叶栅顶部泄漏流动的影响[J]. 工程热物理学报, 2016, 37(5): 963-968. |
FU Y F, SONG Y P, CHEN C, et al. Influence of honeycomb casing and honeycomb tip on tip leakage flow in turbine cascade[J]. Journal of Engineering Thermophysics, 2016, 37(5): 963-968. | |
100 | 高杰, 郑群, 李义进. 动叶顶部蜂窝面迷宫密封对涡轮级气动性能的影响[J]. 航空动力学报, 2012, 27(1): 160-168. |
GAO J, ZHENG Q, LI Y J. Effect of labyrinth-honeycomb seal of shrouded rotor blades on the aerodynamic performance of the turbine stage[J]. Journal of Aerospace Power, 2012, 27(1): 160-168. | |
101 | 李盼, 李勇, 曹丽华, 等. 一种新型蜂窝密封的封严特性[J]. 化工进展, 2018, 37(5): 1655-1663. |
LI P, LI Y, CAO L H, et al. Sealing characteristics of a new honeycomb seal[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1655-1663. | |
102 | 王佳蓉, 张万福, 陈璐琪, 等. 孔型密封泄漏特性影响因素研究[J]. 热能动力工程, 2019, 34(11): 8-13. |
WANG J R, ZHANG W F, CHEN L Q, et al. Research on the influence factors of leakage characteristics for hole-pattern seals[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(11): 8-13. | |
103 | 张雨霏, 何立东, 王胜利, 等. 蜂窝密封的设计、仿真及其应用研究[J]. 机电工程, 2021, 38(7): 807-814. |
ZHANG Y F, HE L D, WANG S L, et al. Design and simulation analysis of honeycomb seal and its application[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(7): 807-814. | |
104 | 何立东, 袁新, 尹新. 蜂窝密封减振机理的实验研究[J]. 中国电机工程学报, 2001, 21(10): 24-27. |
HE L D, YUAN X, YIN X. Experimental invertigation on the suppression mechanism for honeycomb seals[J]. Proceedings of the CSEE, 2001, 21(10): 24-27. | |
105 | 李金波, 何立东. 蜂窝密封流场旋涡能量耗散的数值研究[J]. 中国电机工程学报, 2007, 27(32): 67-71. |
LI J B, HE L D. Energy dissipation of vortexs in honeycomb seals using numerical simulation[J]. Proceedings of the CSEE, 2007, 27(32): 67-71. | |
106 | 孙丹, 李胜远, 肖忠会, 等. 锥形间隙孔型阻尼密封动力特性分析及抑振机理[J]. 航空动力学报, 2018, 33(7): 1544-1552. |
SUN D, LI S Y, XIAO Z H, et al. Rotordynamic characteristics analysis and suppression vibration mechanism of taper clearance hole-pattern damper seal[J]. Journal of Aerospace Power, 2018, 33(7): 1544-1552. | |
107 | 窦媛媛. 蜂窝外环及磨损槽对篦齿封严泄漏特性的影响研究[D]. 南京: 南京航空航天大学, 2020. |
DOU Y Y. Research on the influence of honeycomb land and worn-honeycomb land on the sealing characteristics of labyrinth seals[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. | |
108 | 向新, 薛朝囡, 许朋江, 等. 蜂窝面单齿迷宫密封泄漏特性试验和数值研究[J]. 热力透平, 2023, 52(2): 87-94, 109. |
XIANG X, XUE C N, XU P J, et al. Test and numerical investigations on the leakage flow characteristics of honeycomb single-tooth labyrinth seal[J]. Thermal Turbine, 2023, 52(2): 87-94, 109. | |
109 | ERDOĞAN B, ZENGIN. Numerical analysis of geometry and operating conditions in combined honeycomb and inclined labyrinth sealing elements[J]. Progress in Computational Fluid Dynamics, an International Journal, 2023, 23(1): 1. |
110 | 杨兴辰, 张万福, 顾承璟, 等. 迷宫-蜂窝混合型密封静态稳定性与泄漏特性研究[J]. 摩擦学学报, 2021, 41(5): 738-748. |
YANG X C, ZHANG W F, GU C J, et al. Leakage performance and static stability of hybrid labyrinth-honeycomb seals[J]. Tribology, 2021, 41(5): 738-748. | |
111 | ALLISON T C, SMITH N R, PELTON R, et al. Experimental validation of a wide-range centrifugal compressor stage for supercritical CO2 power cycles[C]//Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. June 11-15, 2018. Oslo, Norway. American Society of Mechanical Engineers, 2018. |
[1] | 郭祚刚, 刘通, 徐敏, 徐申, 陈光明, 郝新月. 新型喷射增效压缩空气储能系统性能[J]. 储能科学与技术, 2024, 13(6): 1877-1887. |
[2] | 李杨. 压缩空气储能储气库热力学改进的数学模型[J]. 储能科学与技术, 2024, 13(5): 1707-1709. |
[3] | 张留淦, 周颖驰, 孙文兵, 叶楷, 陈龙祥. 利用ORC-VCR回收压缩热的预冷式CAES系统性能分析[J]. 储能科学与技术, 2024, 13(2): 611-622. |
[4] | 李文慧, 焦勇涵, 郭歌, 李佳俊, 邓建强. 压缩空气储能系统供冷性能提升[J]. 储能科学与技术, 2023, 12(9): 2833-2841. |
[5] | 孙晓霞, 桂中华, 高梓玉, 周冰倩, 刘夏, 张新敬, 郭欢, 李文, 盛勇, 朱阳历, 周健, 徐玉杰. 压缩空气储能系统动态运行特性[J]. 储能科学与技术, 2023, 12(6): 1840-1853. |
[6] | 许永红, 吴玉庭, 张红光, 杨富斌, 王焱. 基于气动马达的微型压缩空气储能系统的试验研究[J]. 储能科学与技术, 2023, 12(6): 1854-1861. |
[7] | 张玮灵, 古含, 章超, 葛昂, 应元旭. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4): 1295-1301. |
[8] | 虞启辉, 魏志刚, 孙国鑫, 路亮. 基于喷雾换热的压缩空气准等温膨胀系统实验研究及性能分析[J]. 储能科学与技术, 2023, 12(3): 878-888. |
[9] | 尹航, 王强, 朱佳华, 廖志荣, 张子楠, 徐二树, 徐超. 耦合光热发电储热-有机朗肯循环的先进绝热压缩空气储能系统热力学分析[J]. 储能科学与技术, 2023, 12(12): 3749-3760. |
[10] | 王凯轩, 左志涛, 梁奇, 郭文宾, 陈海生. 离心式压缩机性能预测方法综述[J]. 储能科学与技术, 2023, 12(11): 3435-3444. |
[11] | 耿晓倩, 徐玉杰, 黄景坚, 凌浩恕, 张雪辉, 孙爽, 陈海生. 先进压缩空气储能系统全生命周期能耗及二氧化碳排放[J]. 储能科学与技术, 2022, 11(9): 2971-2979. |
[12] | 吴玉庭, 寇真峰, 张灿灿, 吴伊洋. 列管式固体氯化钠蓄冷换热器动态分布参数分析[J]. 储能科学与技术, 2022, 11(6): 1988-1995. |
[13] | 刘迪, 张甜甜, 彭宇维, 唐晓梅, 王丹, 毛承雄. 压缩空气储能系统释能环节轴系建模与振荡分析[J]. 储能科学与技术, 2022, 11(2): 563-572. |
[14] | 郑澳辉, 曹峥, 徐玉杰, 陈海生, 邓建强. 压缩空气储能驱动反渗透海水淡化系统[J]. 储能科学与技术, 2021, 10(5): 1597-1606. |
[15] | 夏琦, 何阳, 徐玉杰, 陈海生, 邓建强. 绝热压缩空气储能系统冷热电联供与负荷匹配特性[J]. 储能科学与技术, 2021, 10(5): 1494-1502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||