储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2286-2299.doi: 10.19799/j.cnki.2095-4239.2024.0116
李昌豪1(), 汪书苹1, 杨献坤2,3(), 曾子琪2, 周昕玥1, 谢佳2
收稿日期:
2024-02-05
修回日期:
2024-02-28
出版日期:
2024-07-28
发布日期:
2024-07-23
通讯作者:
李昌豪,杨献坤
E-mail:346550617@qq.com;yxk0222@163.com
作者简介:
李昌豪(1995—),男,工程师,研究方向为电力储能安全防护技术研究,E-mail:346550617@qq.com;
基金资助:
Changhao LI1(), Shuping WANG1, Xiankun YANG2,3(), Ziqi ZENG2, Xinyue ZHOU1, Jia XIE2
Received:
2024-02-05
Revised:
2024-02-28
Online:
2024-07-28
Published:
2024-07-23
Contact:
Changhao LI, Xiankun YANG
E-mail:346550617@qq.com;yxk0222@163.com
摘要:
锂离子电池已在移动设备、电动交通工具和储能系统等领域得到广泛应用。开发能够在低温条件下稳定工作的锂离子电池,可满足科学探索与军事战略地位的高寒地区、两极地区,以及高空和近太空等区域对能量储存及释放的需求。电解液作为锂离子电池中一个重要组成部分,对低温下锂离子电池的性能表现起着决定性的作用。传统碳酸酯电解液的高熔点以及低温下的离子传输速度缓慢的特性,会导致寒冷环境下电池输出功率的下降甚至电池失效。引入低熔点组分溶剂,降低碳酸乙烯酯溶剂在电解液中的比例或者设计无碳酸乙烯酯电解液,可以有效改善电解液的液程范围和离子导电能力,从而减小电池极化,提升锂离子电池的低温性能。本文首先从电解液的角度阐述了LIBs在低温下的失效原因和析锂机制。在此基础上,探讨了近五年来关于低温电解液设计的研究成果和改性策略,包括溶剂分子、锂盐和成膜添加剂的选择等。此外,介绍了近年来提出的高熵电解液、稀释高浓电解液和弱溶剂化电解液等新型电解液设计策略。最后,总结了低温电解液设计策略的优缺点、科学挑战,并就该领域的现状提出了未来可能的发展方向。
中图分类号:
李昌豪, 汪书苹, 杨献坤, 曾子琪, 周昕玥, 谢佳. 低温型锂离子电池中的非水电解质研究进展[J]. 储能科学与技术, 2024, 13(7): 2286-2299.
Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299.
16 | LI Y Y, QIAN K, HE Y B, et al. Study on the reversible capacity loss of layered oxide cathode during low-temperature operation[J]. Journal of Power Sources, 2017, 342: 24-30. |
17 | JURNG S, PARK S, YOON T, et al. Low-temperature performance improvement of graphite electrode by allyl sulfide additive and its film-forming mechanism[J]. Journal of the Electrochemical Society, 2016, 163(8): a1798-a1804. |
18 | WANG C L, THENUWARA A C, LUO J M, et al. Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions[J]. Nature Communications, 2022, 13: 4934. |
19 | XU H F, HU R M, YAN H B, et al. Solvation structure-tunable phase change electrolyte for stable lithium metal batteries[J]. ACS Energy Letters, 2022, 7(11): 3761-3769. |
20 | SUN Y L, LIU B Y, LIU L Y, et al. Ions transport in electrochemical energy storage devices at low temperatures[J]. Advanced Functional Materials, 2022, 32(15): 2109568. |
21 | JONES J P, JONES S C, KRAUSE F C, et al. Additive effects on Li||CFx and Li||CFx-MnO2 primary cells at low temperature[J]. Journal of The Electrochemical Society, 2017, 164(13): A3109. |
22 | LIN W, ZHU M Y, FAN Y J, et al. Low temperature lithium-ion batteries electrolytes: Rational design, advancements, and future perspectives[J]. Journal of Alloys and Compounds, 2022, 905: 164163. |
23 | HOU R, GUO S H, ZHOU H S. Atomic insights into advances and issues in low‐temperature electrolytes[J]. Advanced Energy Materials, 2023, 13(14): 2300053. |
24 | LI Q Y, JIAO S H, LUO L L, et al. Wide-temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835. |
25 | YAO N, CHEN X, SHEN X, et al. An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes[J]. Angewandte Chemie (International Ed in English), 2021, 60(39): 21473-21478. |
26 | PAL B, YANG S Y, RAMESH S, et al. Electrolyte selection for supercapacitive devices: A critical review[J]. Nanoscale Advances, 2019, 1(10): 3807-3835. |
27 | ZHANG S S, XU K, JOW T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1): 137-140. |
28 | ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061. |
29 | JOW T, DELP S A, ALLEN J, et al. Factors limiting Li+ charge transfer kinetics in Li-ion batteries[J]. Journal of The Electrochemical Society, 2018, 165(2): A361. |
30 | XU K, VON CRESCE A, LEE U. Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(13): 11538-11543. |
31 | LI Q Y, LU D P, ZHENG J M, et al. Li+-desolvation dictating lithium-ion battery's low-temperature performances[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42761-42768. |
32 | LEI S, ZENG Z Q, LIU M C, et al. Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries[J]. Nano Energy, 2022, 98: 107265. |
33 | LIU X W, SHEN X H, LI H, et al. Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure[J]. Advanced Energy Materials, 2021, 11(19): 2003905. |
34 | LIAO B, LI H Y, XU M Q, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced Energy Materials, 2018, 8(22): 1800802. |
35 | SHI S Q, LU P, LIU Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
36 | RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245. |
37 | WENG S T, ZHANG X, YANG G J, et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries[J]. Nature Communications, 2023, 14: 4474. |
38 | GUO R D, CHE Y X, LAN G Y, et al. Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38285-38293. |
39 | GAO T, HAN Y, FRAGGEDAKIS D, et al. Interplay of lithium intercalation and plating on a single graphite particle[J]. Joule, 2021, 5(2): 393-414. |
1 | 王峰, 甘朝伦, 袁翔云. 锂离子电池电解液产业化进展[J]. 储能科学与技术, 2016, 5(1): 1-8. |
WANG F, GAN C L, YUAN X Y. Industrial progress of nonaqueous liquid electrolytes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 1-8. | |
2 | 夏恒恒, 梁鹏程, 安仲勋. 硫系电解液添加剂对镍钴锰酸锂//石墨锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2390-2400. |
XIA H H, LIANG P C, AN Z X. Effects of sulfur-containing electrolyte additives on the performance of lithium nickel cobalt manganese oxide// graphite Li-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2390-2400. | |
3 | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
FENG M, CHEN N, CHEN R J. Research progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 792-807. | |
4 | CHANG N N, LI T Y, LI R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy & Environmental Science, 2020, 13(10): 3527-3535. |
5 | 韦连梅, 燕溪溪, 张素娜, 等. 锂离子电池低温电解液研究进展[J]. 储能科学与技术, 2017, 6(1): 69-77. |
WEI L M, YAN X X, ZHANG S N, et al. Progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2017, 6(1): 69-77. | |
6 | XIONG R, LI Z Y, YANG R X, et al. Fast self-heating battery with anti-aging awareness for freezing climates application[J]. Applied Energy, 2022, 324: 119762. |
7 | 王苏杭, 李建林, 李雅欣, 等. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
WANG S H, LI J L, LI Y X, et al. Research on charging strategy of lithium-ion battery system at low temperature[J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. | |
8 | LI W, KLEMES J J, WANG Q W, et al. Efficient thermal management strategy of Li-ion battery pack based on sorption heat storage[J]. Energy Conversion and Management, 2022, 256: 115383. |
40 | WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells-A review[J]. Journal of Power Sources, 2018, 384: 107-124. |
41 | OUYANG M G, CHU Z Y, LU L G, et al. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles[J]. Journal of Power Sources, 2015, 286: 309-320. |
42 | CHRISTIN H, THOMAS W, MARKUS H, et al. Direct observation of internal short circuits by lithium dendrites in cross-sectional lithium-ion in situ full cells[J]. Journal of Power Sources, 2023, 556: 232391. |
43 | 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
DENG L W, FENG T Y, SHU S W, et al. Nondestructive lithium plating online detection for lithium-ion batteries: A review[J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. | |
44 | LI J, LI H, MA X, et al. Methyl acetate as a co-solvent in NMC532/graphite cells[J]. Journal of The Electrochemical Society, 2018, 165(5): A1027. |
45 | 刘志浩, 杜童, 李瑞瑞, 等. 宽温域、高电压、安全无EC电解液研究进展[J]. 储能科学与技术, 2023, 12(8): 2504-2525. |
LIU Z H, DU T, LI R R, et al. Developments of wide temperature range, high voltage and safe EC-free electrolytes[J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. | |
46 | SMART M C, RATNAKUMAR B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of the Electrochemical Society, 2011, 158(4): A379-A389. |
47 | LI L C, LV W X, CHEN J, et al. Lithium difluorophosphate (LiPO2F2): An electrolyte additive to help boost low-temperature behaviors for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(9): 11900-11914. |
48 | QIN M S, ZENG Z Q, LIU X W, et al. Revealing surfactant effect of trifluoromethylbenzene in medium-concentrated PC electrolyte for advanced lithium-ion batteries[J]. Advanced Science, 2023, 10(12): e2206648. |
49 | XU G J, HUANG S Q, CUI Z L, et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-Class) Li-ion battery[J]. Journal of Power Sources, 2019, 416: 29-36. |
50 | LV W X, ZHU C J, CHEN J, et al. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chemical Engineering Journal, 2021, 418: 129400. |
51 | LAI P B, HUANG B Y, DENG X D, et al. A localized high concentration carboxylic ester-based electrolyte for high-voltage and low temperature lithium batteries[J]. Chemical Engineering Journal, 2023, 461: 141904. |
52 | XU J, WANG X, YUAN N, et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23: 383-389. |
53 | YANG Y, CHEN Y, TAN L, et al. Rechargeable LiNi0.65Co0.15Mn0.2O2 ||graphite batteries operating at -60 ℃[J]. Angewandte Chemie International Edition, 2022, 61(42): e202209619. |
54 | SMART M C, RATNAKUMAR B V, SURAMPUDI S. Electrolytes for low‐temperature lithium batteries based on ternary mixtures of aliphatic carbonates[J]. Journal of the Electrochemical Society, 1999, 146(2): 486-492. |
55 | PLICHTA E, BEHL W. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources, 2000, 88(2): 192-196. |
56 | ZHANG S S, XU K, ALLEN J L, et al. Effect of propylene carbonate on the low temperature performance of Li-ion cells[J]. Journal of Power Sources, 2002, 110(1): 216-221. |
57 | EIN-ELI Y, THOMAS S R, CHADHA R, et al. Li-ion battery electrolyte formulated for low-temperature applications[J]. Journal of the Electrochemical Society, 1997, 144(3): 823-829. |
58 | CHO Y G, KIM Y S, SUNG D G, et al. Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges[J]. Energy & Environmental Science, 2014, 7(5): 1737-1743. |
59 | PIAO Z H, GAO R H, LIU Y Q, et al. A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries[J]. Advanced Materials, 2023, 35(15): e2206009. |
60 | QIN M S, ZENG Z Q, WU Q, et al. 1, 3, 5-Trifluorobenzene endorsed EC-free electrolyte for high-voltage and wide-temperature lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 85: 49-57. |
61 | QIN M S, ZENG Z Q, WU Q, et al. Dipole-dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the horizon of electrolyte design[J]. Energy & Environmental Science, 2023, 16(2): 546-556. |
62 | QIN M S, LIU M C, ZENG Z Q, et al. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries[J]. Advanced Energy Materials, 2022, 12(48): 2201801. |
63 | GU Y X, FANG S H, YANG L, et al. A safe electrolyte for high-performance lithium-ion batteries containing lithium difluoro(oxalato)borate, gamma-butyrolactone and non-flammable hydrofluoroether[J]. Electrochimica Acta, 2021, 394: 139120. |
64 | DONG X L, GUO Z W, GUO Z Y, et al. Organic batteries operated at –70 ℃[J]. Joule, 2018, 2(5): 902-913. |
65 | LEI S, ZENG Z Q, YAN H, et al. Nonpolar cosolvent driving LUMO energy evolution of methyl acetate electrolyte to afford lithium-ion batteries operating at –60 ℃[J]. Advanced Functional Materials, 2023, 33(34): 2301028. |
66 | PETIBON R, HARLOW J, LE D B, et al. The use of ethyl acetate and methyl propanoate in combination with vinylene carbonate as ethylene carbonate-free solvent blends for electrolytes in Li-ion batteries[J]. Electrochimica Acta, 2015, 154: 227-234. |
67 | CHO Y G, LI M Q, HOLOUBEK J, et al. Enabling the low-temperature cycling of NMC||graphite pouch cells with an ester-based electrolyte[J]. ACS Energy Letters, 2021, 6(5): 2016-2023. |
68 | YANG Y, FANG Z, YIN Y, et al. Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature[J]. Angewandte Chemie (International Ed in English), 2022, 61(36): e202208345. |
69 | HOLOUBEK J, YU M Y, YU S C, et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation[J]. ACS Energy Letters, 2020, 5(5): 1438-1447. |
70 | YAMADA Y, YAEGASHI M, ABE T, et al. A superconcentrated ether electrolyte for fast-charging Li-ion batteries[J]. Chemical Communications, 2013, 49(95): 11194-11196. |
71 | ABE T, KAWABATA N, MIZUTANI Y, et al. Correlation between cointercalation of solvents and electrochemical intercalation of lithium into graphite in propylene carbonate solution[J]. Journal of the Electrochemical Society, 2003, 150(3): A257. |
72 | RAMASAMY H V, KIM S, ADAMS E J, et al. A novel cyclopentyl methyl ether electrolyte solvent with a unique solvation structure for subzero (–40 ℃) lithium-ion batteries[J]. Chemical Communications, 2022, 58(33): 5124-5127. |
73 | LI L F, ZHOU S S, HAN H B, et al. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents[J]. Journal of the Electrochemical Society, 2011, 158(2): doi: 10.1149/1.3514705. |
74 | YAO Y X, YAO N, ZHOU X R, et al. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures[J]. Advanced Materials, 2022, 34(45): e2206448. |
75 | HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632. |
76 | 王爱国, 王玉芬, 吕金荣, 等. 双氟磺酰亚胺锂的生产工艺与市场分析[J]. 有机氟工业, 2023(1): 32-35, 53. |
WANG A G, WANG Y F, LYU J R, et al. Production process and market analysis of lithium difluoride sulfonimide[J]. Organo-Fluorine Industry, 2023(1): 32-35, 53. | |
77 | ZHENG T L, XIONG J W, ZHU B Y, et al. From –20 ℃ to 150 ℃: A lithium secondary battery with a wide temperature window obtained via manipulated competitive decomposition in electrolyte solution[J]. Journal of Materials Chemistry A, 2021, 9(14): 9307-9318. |
78 | ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032. |
79 | ZHANG S B, XU K, JOW T. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4: 928-932. |
80 | ZHANG Z Y, HU T, SUN Q M, et al. The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance[J]. Journal of Power Sources, 2020, 453: 227908. |
81 | UE M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ‐butyrolactone[J]. Journal of the Electrochemical Society, 1994, 141: 3336-3342. |
82 | XU K, ZHANG S S, JOW T, et al. LiBOB as salt for lithium-ion batteries: A possible solution for high temperature operation[J]. Electrochemical and Solid-State Letters, 2001, 5(1): A26. |
83 | LI F Q, YAN G, JIA G F, et al. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability[J]. Journal of Power Sources, 2015, 295: 47-54. |
84 | ZHANG S B, XU K, JOW T. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range[J]. Journal of Power Sources, 2006, 159(1): 702-707. |
85 | ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): e2107899. |
86 | LIU B X, LI B, GUAN S Y. Effect of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2012, 15(6): A77. |
87 | SMART M C, LUCHT B L, DALAVI S. The effect of additives upon the performance of MCMB/LiNixCo1- xO2 Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes[J]. Journal of the Electrochemical Society, 2012, 159(6): A739-A751. |
88 | LIAO L, CHENG X Q, MA Y L, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87: 466-472. |
89 | ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394. |
90 | LI S Y, LI X P, LIU J L, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2015, 21(4): 901-907. |
91 | SHI J L, EHTESHAMI N, MA J L, et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429: 67-74. |
92 | LEI Q, YANG T, ZHAO X, et al. Lithium difluorophosphate as a multi-functional electrolyte additive for 4.4V LiNi0.5Co0.2Mn0.3O2/graphite lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 846: 113141. |
93 | WRODNIGG G H, BESENHARD J O, WINTER M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes[J]. Journal of the Electrochemical Society, 1999, 146(2): 470-472. |
94 | WRODNIGG G H, WRODNIGG T M, BESENHARD J O, et al. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[J]. Electrochemistry Communications, 1999, 1(3): 148-150. |
95 | HAN Y K, YOO J, YIM T. Why is tris(trimethylsilyl) phosphite effective as an additive for high-voltage lithium-ion batteries?[J]. Journal of Materials Chemistry A, 2015, 3(20): 10900-10909. |
96 | LIU B, LI Q Y, ENGELHARD M H, et al. Constructing robust electrode/electrolyte interphases to enable wide temperature applications of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21496-21505. |
97 | LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges[J]. Chemistry, 2021, 27(64): 15842-15865. |
9 | 冯晓晗, 孙杰, 何健豪, 等. 磷酸铁锂正极材料改性研究进展[J]. 储能科学与技术, 2022, 11(2): 467-486. |
FENG X H, SUN J, HE J H, et al. Research progress in LiFePO4 cathode material modification[J]. Energy Storage Science and Technology, 2022, 11(2): 467-486. | |
10 | XU J, WANG X, YUAN N Y, et al. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance[J]. Journal of Power Sources, 2019, 430: 74-79. |
11 | ZHANG S S. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8(9): 1423-1428. |
12 | ZHANG W, SUN X L, TANG Y X, et al. Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures[J]. Journal of the American Chemical Society, 2019, 141(36): 14038-14042. |
13 | QIN R H, WEI Y Q, ZHAI T Y, et al. LISICON structured Li3V2(PO4)3 with high rate and ultralong life for low-temperature lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(20): 9737-9746. |
14 | TAI L H, ZHAO Q, SUN L Q, et al. A study of the electrochemical behavior at low temperature of the Li3V2(PO4)3 cathode material for Li-ion batteries[J]. New Journal of Chemistry, 2015, 39(12): 9617-9626. |
15 | HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578. |
98 | ZHANG W, XIA H R, ZHU Z Q, et al. Decimal solvent-based high-entropy electrolyte enabling the extended survival temperature of lithium-ion batteries to -130 ℃[J]. CCS Chemistry, 2021, 3(4): 1245-1255. |
99 | WANG Q D, ZHAO C L, WANG J L, et al. High entropy liquid electrolytes for lithium batteries[J]. Nature Communications, 2023, 14: 440. |
100 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4: 882-890. |
101 | XU J, YUAN N, RAZAL J, et al. Temperature-independent capacitance of carbon-based supercapacitor from -100 to 60 ℃[J]. Energy Storage Materials, 2019, 22: 323-329. |
102 | HOLOUBEK J, LIU H D, WU Z H, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6: 303-313. |
103 | KIM H, LIM K, YOON G, et al. Exploiting lithium-ether co-intercalation in graphite for high-power lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(19): 1700418. |
104 | LIU Q Q, WANG L G. Fundamentals of electrolyte design for wide-temperature lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(37): 2301742. |
[1] | 陈国贺, 吕培召, 李孟涵, 饶中浩. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. |
[2] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[3] | 刘承鑫, 李梓衡, 陈泽宇, 李鹏祥, 陶庆一. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. |
[4] | 陆洋, 闫帅帅, 马骁, 刘誌, 章伟立, 刘凯. 低温锂电池电解液的研究与应用[J]. 储能科学与技术, 2024, 13(7): 2224-2242. |
[5] | 廖世接, 魏颖, 黄云辉, 胡仁宗, 许恒辉. 间二氟苯稀释剂稳定电极界面助力低温锂金属电池[J]. 储能科学与技术, 2024, 13(7): 2124-2130. |
[6] | 李想, 刘德重, 袁开, 陈大鹏. 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术, 2024, 13(7): 2327-2347. |
[7] | 王美龙, 薛煜瑞, 胡文茜, 杜可遇, 孙瑞涛, 张彬, 尤雅. 低温磷酸铁锂电池用全醚高熵电解液的设计研究[J]. 储能科学与技术, 2024, 13(7): 2131-2140. |
[8] | 王浩天, 王永刚, 董晓丽. 基于有机电极材料的低温电池研究进展[J]. 储能科学与技术, 2024, 13(7): 2259-2269. |
[9] | 黄嘉琦, 熊杰明, 谭恩忠, 孙心语, 程李巍, 王华. 重新审视低温钠金属半电池[J]. 储能科学与技术, 2024, 13(7): 2151-2160. |
[10] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[11] | 马国政, 陈金伟, 熊兴宇, 杨振忠, 周钢, 胡仁宗. SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究[J]. 储能科学与技术, 2024, 13(7): 2107-2115. |
[12] | 王文涛, 魏一凡, 黄鲲, 吕国伟, 张思瑶, 唐昕雅, 陈泽彦, 林清源, 母志鹏, 王昆桦, 才华, 陈军. 低温锂离子电池测试标准及研究进展[J]. 储能科学与技术, 2024, 13(7): 2300-2307. |
[13] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[14] | 李征, 杨振忠, 王琼, 胡仁宗. 基于专利情报分析的锂离子电池用低温电解液的发展现状和研究进展[J]. 储能科学与技术, 2024, 13(7): 2317-2326. |
[15] | 程广玉, 刘新伟, 刘硕, 顾海涛, 王可. 调控电解液溶剂组分实现LCO/C低温18650电池循环寿命显著提升[J]. 储能科学与技术, 2024, 13(7): 2171-2180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||